封闭量子系统表现出不同的动态状态,如多体局部化或热化,它们决定了信息传播和处理的机制。本文我们讨论了这些动态阶段对量子库计算的影响,量子库计算是一种非常规计算范式,最近扩展到量子领域,利用动态系统来解决非线性和时间任务。我们确定热阶段自然适应量子库计算的要求,并报告了所研究任务在热化转变时性能的提高。揭示自旋网络最佳信息处理能力背后的潜在物理机制对于未来的实验实现至关重要,并为动态阶段提供了新的视角。
尽管在神经科学方面取得了长足的进步,但仍然存在有关大脑的基本问题,包括主观经验和意识的起源。一些答案可能依赖于新的物理机制。鉴于在大脑中发现了生物光子,探索神经元除了使用精心研究的电信号外使用光子通信很有趣。大脑中的这种光子通信需要波导。在这里,我们回顾了最近的工作(S. Kumar,K。Boone,J。Tuszynski,P。Barclay和C. Simon,Scientific Reports 6,36508(2016)),建议髓鞘轴突可以用作光子波导。考虑到其现实的缺陷,对髓鞘轴突中的光传递进行了建模,并在体内和体外提出了实验,以检验该假设。讨论了对量子生物学的潜在影响。
随着超导量子处理器的复杂性不断增加,需要克服频率拥挤限制的技术。最近开发的激光退火方法提供了一种有效的后制造方法来调整超导量子比特的频率。在这里,我们展示了一种基于传统显微镜组件的自动激光退火装置,并展示了高度相干的透射的保存。在一个案例中,我们观察到激光退火后相干性增加了两倍,并对这个量子比特进行噪声光谱分析,以研究缺陷特征的变化,特别是两级系统缺陷。最后,我们提出了一个局部加热模型,并展示了晶圆级激光退火的老化稳定性。我们的工作是理解潜在物理机制和扩大超导量子比特激光退火规模的重要第一步。
远紫外线(100 nm至300 nm)中的超快激光源已成为激烈的实验努力的主题,几十年来,主要是由超快科学领域的先进实验的要求驱动。在充满气体的空心毛细管纤维中经历孤子自我压缩的高能激光脉冲的共振分散波发射有望首次满足这些需求的几种需求,最重要的是,通过将宽范围的波长型曲折性与产生极短的脉冲相结合。从这个角度来看,我们概述了这种对超快远程资料来源的方法,包括其历史起源和潜在的物理机制,艺术的状态和当前的挑战,以及我们对超快科学内外潜在应用的看法。
近年来,在确定影响土壤微生物组结构的土壤特性方面取得了很大进展。相比之下,微生物对土壤栖息地的影响较少,而先前的大多数研究都侧重于微生物对土壤碳和氮动力学的贡献。然而,土壤微生物不仅参与养分循环和有机物转化,而且还通过各种生化和生物物理机制改变土壤栖息地。这种微生物介导的土壤特性的修饰可以对微生物组的局部影响,并具有明显的生态分析。在这篇综述中,我们描述了微生物在考虑土壤物理学,水文和化学的过程中修改土壤环境的过程。我们探讨了微生物 - 土壤相互作用如何产生反馈循环,并讨论如何对土壤特性的微生物介导的修改作为管理和操纵微生物组以打击土壤威胁和全球变化的替代途径。
摘要:在设计用于超大规模集成 (VLSI) 系统的数字电路时,降低功耗方面的能效考虑是一个重要问题。量子点细胞自动机 (QCA) 是一种新兴的超低功耗方法,不同于传统的互补金属氧化物半导体 (CMOS) 技术,用于构建数字计算电路。开发完全可逆的 QCA 电路有可能显著降低能量耗散。多路复用器是构建有用数字电路的基本元素。本文介绍了一种具有超低能耗的新型多层完全可逆 QCA 8:1 多路复用器电路。使用 QCADesigner-E 2.2 版工具模拟了所提出的多路复用器的功耗,描述了 QCA 操作背后的微观物理机制。结果表明,所提出的可逆 QCA 8:1 多路复用器的能耗比文献中之前介绍的最节能的 8:1 多路复用器电路低 89%。
始终提高的心力衰竭患病率(HF)以前被归类为1997年的新兴流行病,并且仍代表了一个严重的公共卫生问题,它迫使我们更深入地研究其基于病理生理机制。在过去几年中,选择了几种生物标志物,并用于管理受HF影响的患者的管理。有关生物标志物的研究通过识别急性和慢性HF患者发生的一些潜在的病理生理机制来扩大我们的知识。本综述旨在概述以前被确定为负责疾病和其他新出现患者的病理物理机制的生物标志物的作用,以进行治疗并确定可能允许优化治疗和/或影响更紧密的随访的预后意义。考虑了使用各种生物标志物的综合方法的高流行率,在预测死亡率,可取的风险分层以及减少回医保健成本方面显示出令人鼓舞的结果。
第二部分课程详细信息1。摘要(关于课程的150个字描述)如今,经济发展在很大程度上依赖能源资源和能源技术。已大量的努力致力于设计与能源相关的应用的新型材料,尤其是为了生成和存储清洁和可再生能源,例如太阳能。在这些材料中,由于其异常特性,波浪功能材料(例如超材料和光子晶体)是有希望的候选者。本课程旨在为学生提供对波浪功能材料的详细介绍和全面理解。它将强调导致其异常特性的基本物理机制,例如增强光吸收的共振。的实用应用,例如能源收集和存储,光子检测和无线功率传输。在本课程结束时,学生将获得基本知识,并掌握必要的数值和分析技术来设计波功能材料。2。课程预期的学习成果(CILOS)(CILOS表示,根据给定的表现标准,学生期望在课程结束时做什么。)
[13] 2020-21美国干旱的2020-21,AGU秋季会议,美国旧金山,2023年12月。(海报)[12]陆地大气相互作用和热带南美洲的干旱,在美国帕利塞德的Lamont-Doherty Earth天文台举行的OCP研讨会,2023年9月。(口腔)[11]对热带南美极端土壤条件的水文气象反应建模:方法和物理机制,Nanjing University的大气科学学院,Virtual,2023年3月。(邀请的谈话)[10]解开土地表面状况和内部大气变异性对美国干旱发展的贡献,AMS年度会议,虚拟,2023年1月。(海报)[9]对热带南美极端土壤条件的水文学反应建模:方法论和物理机制,AGU秋季会议,美国芝加哥,2022年12月。(海报)[8]一种新的土壤初始化方法,用于研究中季陆地 - 大气相互作用,CESM工作组,虚拟,2022年6月。(口腔)[7]在热带南美,UCAR土地模型和生物地球化学工作组的季风前季节对极端土壤状况的水文学反应建模,虚拟,2022年1月。(口服)[6]对热带南美最新干旱的生态流水学反应,AMS年度会议,虚拟,2022年1月。(口服)[5]模拟了气候对南美极端土壤条件的建模,美国新奥尔良,美国新奥尔良,2021年12月。(海报)[4]模拟了南美气候对森林砍伐的三十年的反应,美国康涅狄格大学的民用与环境工程系,美国斯特尔斯,2021年4月。(口服)[3]在热带南美洲最近干旱,AGU秋季会议,虚拟,2020年12月的生态杂种反应中的差异。(口服)[2]探索使用区域气候竞争模型,AMS年度会议,美国波士顿,2020年1月。(海报)[1]建模土地覆盖变化对南美地区气候的影响,使用耦合区域模型,AGU秋季会议,美国旧金山,2019年12月。(海报)病房