摘要。部件或结构的可靠性能取决于部件的服役前质量和运行条件下部件的服役退化。无损评估 (NDE) 在确保服役前质量以及监测服役退化以避免部件/结构过早失效方面的作用日益增强。有许多基于各种物理原理的 NDE 技术。NDE 的最终目标是检测和表征材料中的缺陷、应力和微观结构退化等异常。这是通过建立无损测量的物理/派生参数与缺陷/应力/微观结构的定量信息之间的相关性来实现的。NDE 信息与设计参数一起被考虑用于评估部件/结构的完整性和寿命。本文简要介绍了 NDE 方法的物理概念以及用于评估缺陷、应力和微观结构的物理/派生参数。本文还根据作者实验室进行的研究,讨论了一些案例研究,强调了无损检测和评估对结构完整性评估的重要性。本文还讨论了材料智能处理、专家系统、神经网络、使用多传感器融合数据以及利用信号分析和成像方法等新兴概念。
讲座讲座将涵盖三个主要主题。第一部分将概述基本的空间物理概念,旨在了解磁层的工作原理及其驱动方式。这将包括使用建模工具以更定量的方式探索相同的概念,从而揭示可用模型的优势和缺点。讲座的第二部分将使这些概念聚集在一起,以探索如何设计新的空间任务以帮助解决长期存在的科学问题。讲座的第三部分将重点介绍LANL的持续太空科学活动,并将包括一个“职业日”,以传达工作机会和理想的技能,以实现太空物理职业。讲座将与“实验室”协调,以获得更多的动手体验。空间数据分析和建模将是实验室的主要主题。将组织几次领域的旅行来参观Los Alamos设施和历史遗址(例如,可以包括LANSCE,电子加速器,可视化和高性能计算实验室等。)。
抽象的湖泊热动态受到气候变化的影响,对水生生态系统产生了潜在的不利影响。为了更好地了解未来气候变化对湖泊热动态和相关过程的潜在影响,数学模型的使用至关重要。在这项研究中,我们对湖水温度建模进行了全面的综述。我们首先讨论调节湖泊热动力学的物理概念,这些概念是对基于过程模型的描述的底漆。然后,我们概述了在湖水温度建模领域使用的观察水温数据的不同来源,包括原位监测和卫星地球观测。我们对可用的各种湖水温度模型进行了分类,然后讨论模型性能,包括常用的性能指标和优化方法。最后,我们分析了新兴建模方法,包括预测,数字双胞胎,将基于过程的建模与深度学习结合,通过集合建模,适应水管理以及气候和湖泊模型的耦合来评估结构模型差异。这项审查针对的是在羊水学和水文学领域工作的各种各样的专业人员,包括生态学家,生物学家,物理学家,工程师,工程师以及来自私人和公共部门的遥感研究人员,他们有兴趣了解湖水温度建模及其潜在应用。
振动共振扩增通过使用添加性非谐波高频调节来填充弱的低频信号。对综合非线性纳米腔中弱信号增强的实现对于光信号可能具有低功率的纳米光应用引起了极大的兴趣。在这里,我们报告了在热式光子光子晶体彩态机械谐振器中对vi-Brational共振的实验性观察,其放大率高达+16 dB。可以使用膜的机械谐振来有趣的表征,该膜与腔与腔体的强热耦合。相变和双孔电势已被广泛利用,以放大或检测弱信号。1在科学的各种领域观察到的这种一般的物理概念是振动恢复2(VR)现象的核心。作为与众所周知的随机共振的类比,3 VR使用高频(HF)的周期性信号来实现低频(LF)输入信号。理论上已经在不同类型的非线性系统中进行了研究,例如在神经网络中,4在可激发系统5或生物网络中。6
材料在人类文明中的重要性是如此之多,以至于人类文明的不同时期以材料的名字命名,从石器时代到青铜时代,铁器时代和塑料时代,再到硅时代的现代时代。是莱昂纳多·达·芬奇(Leonardo da Vinci)的远处,他提出未来年龄将是设计材料的年龄[1]。由于信息在材料中进行物理编码,因此材料在量子科学技术的发展中具有巨大的作用。将探索量子技术,新的物理概念,现象,功能和材料的途径。理论概念,例如基于Majorana的量子计算[2],用于实现概念的设计材料候选物,以量子材料的形式设计。量子材料是表现出的特性,其特性由量子闪烁,量子纠缠,量子相干性 - 均为量子机械效应的表现。对量子材料的理解和预测需要纳米级科学,高级仪器,材料合成以及建模和仿真之间的协同和协作努力。在这篇简短的评论文章中,我们证明了建模和计算在理解和预测量子材料中的一些实际应用。我们将
量子光子学汇集了基本和技术概念,以利用光的力量。这些笔记的目的是向学生介绍领域,并使他们了解潜在的物理概念以及技术要素,以使他们能够了解研究实验室中的情况。我们遵循领域的历史演变,考虑主要概念,看看基本理论,看看实验室中如何进行实验。一个重要的方面是技术和实验方面,创新不断地推动在量子光子学中实现和衡量的局限性。实验室练习也应与研究这些讲义一起进行。您将有机会在实验室中进行多项测量,从用非线性晶体产生的光子对的测量开始。此测量将向您介绍与单个光子检测和相关测量相关的挑战。然后,可以使用纠缠光子的来源来执行Hong-ou mandel测量值,并考虑基于单个和纠缠光子的量子键分布方案。参加了本课程后,您将拥有遵循和讨论该领域的研究文章所需的知识,并能够在量子光子学实验室中启动研究项目。
课程内容: 模块 1:基本概念 游戏物理 – 游戏引擎(简介)- 物理真实感 – 在游戏中的重要性、物理概念和游戏性能、基础知识 – 坐标系和参考系、标量和矢量、计算矢量大小、矢量叉积、矩阵 – 乘法和旋转、导数。 模块 2:基本牛顿力学和运动学 牛顿三运动定律 – 惯性 – 力 – 质量 – 加速度相等和相反的力、力矢量、力的类型 – 引力 – 摩擦力 – 向心力 – 力平衡和图表、功、能量 – 动能 – 势能 – 守恒 – 功率、平移运动 – 运动方程、旋转运动 - 扭矩 – 角加速度、2D 粒子运动学、3D 粒子运动学、刚体动力学。模块 3:抛射物抛射物属性、简单轨迹和重力、阻力、马格努斯效应 - 抛射物的旋转效应、游戏中的特定抛射物类型 - 炮弹 - 子弹 - 箭、可变质量。模块 4:碰撞:冲量和动量原理 - 线性和角冲量、弹性和非弹性碰撞冲击、恢复系数、碰撞方向和检测、与可移动和不可移动物体的碰撞、与摩擦的碰撞、2D 和 3D 碰撞、游戏应用。模块 5:物理建模:游戏车辆的物理学(飞机、轮船和小船、汽车和气垫船、枪支和爆炸、运动)教科书:1. 游戏程序员的物理学,
简介。光学成像中的超分辨率是指可以提高空间分辨率超出光的衍射极限的方法。衍射极限定义可以在标准光学成像系统中解析的最小特征大小,并由光波长和光学系统的数值光圈(NA)确定[1]。解决远距离成像中亚波长度特征的一种方法是使用上震荡的光点,这是一种现象,其中复杂场可以以大于其截止空间频率的速率局部振荡[2-5]。尽管如此,超级镜的强度与大量侧叶相结合的固有缺点,导致成像质量差。已经研究了数值优化方案[6]和索菲的光学设置[7-9],以缓解侧齿强度。但是,最近引入的物理概念Supprowth [10]为解决此问题提供了有希望的途径。在超级生长领域中,复杂场的局部幅度增长率高于其傅立叶频谱中最高空间频率,从而提供了对亚波长度特征的访问[11]。这个概念与evanevanscent波的接近局部显微镜相似[12,13]。超级生长的光场斑点可以与超震荡区相比,可以呈指数级的强度,并且在理论上已证明能够成像亚波长度对象[14]。
本书是过去 19 年来为放射科住院医师和技师讲课的成果。这两套讲座涵盖了相同的主题,但重点和深度根据两门课程进行了调整。本书的目的是提供一本入门级教科书,不要求学生学习过近期的物理课程。它从基本原理开始,以便班上的每个人都有相同的背景和统一的术语。那些觉得自己数学不太好的学生建议彻底复习第一章中介绍的基本概念。一些物理概念已被简化,以便更好地理解。本书不是一本自己动手的教科书。它是为在有能力的老师的指导下学习而设计的。许多放射科物理学生的最初动机是通过国家委员会或注册考试。本书的主要目的是培养对放射学物理原理的理解,以便利用它们进行高质量的放射检查。本书包含了通过国家委员会和注册考试所需的所有基本材料。使用这些物理讲义的绝大多数学生都轻松通过了考试。整本教科书都使用国际单位制。然而,“老式”单位,如伦琴、rad、rem 和 mCi,在今天的放射科中是实实在在的,而且在未来一段时间内还会继续使用。因此,大多数示例问题都同时介绍了“老式”单位和国际单位制单位。问题是课本不可分割的一部分。学生应该仔细研究示例问题以及每章末尾的问题。一个具有平方根、对数和指数函数的计算器是必不可少的。我要感谢黛比·萨蒂的热情帮助,她经历了多次打字修改。我要感谢学生和住院医生,特别是 AM 博士