通过端粒到核(T2T)基因组学对植物种质资源的精确探索标志着植物基因组学领域的变革性一步,为对植物遗传多样性,适应性和进化的深入了解开辟了前所未有的机会。该研究主题的目的是强调测序和组装技术的最新进步,这些技术允许建造高质量的全长T2T基因组,并探讨这些突破如何促进和利用有价值的植物种植资源。实现T2T完整性对于提供染色体的详尽表示至关重要,捕获以前难以捉摸的遗传信息,并为全面的注释铺平了道路。这张广泛的遗传图提供了对基因功能,基因组结构和植物特征的遗传基础的更深入的见解,所有这些都对改善农业实践和确保植物生物多样性的可持续性都是基本的。随着我们继续目睹测序技术的快速发展的景观,该研究主题旨在促进研究T2T基因组数据的巨大潜力的研究。我们关注这些基因组见解如何增强物种保护工作,为育种计划提供信息,并为遗传资源管理提供宝贵的信息。此外,我们深入研究了可转座元素在塑造植物基因组中的作用,研究了它们与基因组结构的动态相互作用及其对适应和进化所需的遗传鲁棒性的贡献。通过将有关T2T基因组组装,可转座元素动力学以及在植物育种和保护中的应用汇总在一起,该研究主题是旨在利用植物基因组学的研究人员的综合资源。最终,我们的目标是促进植物基因组学的进一步进步,这将有助于全球农业的更具可持续性和弹性的未来。
蚊子(Culicidae)代表全球主要的媒介昆虫,它们还居住在世界上许多陆地和水生栖息地。DNA条形码和元法编码现在广泛用于涉及蚊子的研究和常规实践中。但是,这些方法依赖于由代表分类学凭证标本的条形码序列组成的数据库中可用的信息。在这项研究中,我们评估了主要在线数据库中蚊子的公共数据的可用性,专门针对Culicidae:COI及其2的两个最广泛使用的DNA条形码标记。此外,我们对影响物种覆盖范围的可能因素(即在线数据库中覆盖的物种的百分比)对不同国家的COI以及COI的DNA条形码间隙的出现进行检验。我们的发现显示了存储库公开可用的数据差异,Bold + GenBank的COI的分类学或物种覆盖率为28.4–30.11%,而GenBank的ITS覆盖率为12.32%。非洲,澳大利亚和东方的生物地理区域的覆盖范围最低,而近乎度,果皮和大洋洲的覆盖范围最高。新热带区域具有中间覆盖范围。通常,蚊子多样性和较高数量的医学重要物种的覆盖率较低。此外,较高数量的特有物种的国家往往具有更高的覆盖范围。我们希望这项研究可以帮助指导蚊子的区域物种清单,并为所有蚊子物种的DNA条形码提供公开可用的参考文献库。尽管我们的DNA条形码间隙分析表明,需要在数据库中可用的一半蚊子中修改物种边界,但必须收集其他数据以确认这些结果并允许解释DNA条形码间隙的发生。
为口腔 - 芯片模型创建基本结构涉及设计一个微流体芯片,该微流体芯片复制必需的组件并创建模拟口腔复杂性的微环境。微流体芯片可以由各种材料制成,包括玻璃,硅和聚合物。微流体芯片的标准制造技术包括软光刻,光刻图和注射成型。这些方法可以在芯片上创建复杂的微观结构和通道。微流体芯片应复制口腔的关键成分,包括代表各种口腔组织的细胞培养室,例如上皮细胞,成纤维细胞和唾液腺细胞,这些细胞包含在细胞外基质中。细胞外基质可以结合水凝胶或其他材料,以提供结构支撑和细胞附着和生长的基板。结合灌注系统可模拟血液,使营养素,氧气和药物的递送2,3。
我们描述了一种分析复杂微生物种群遗传多样性的新型分子方法。该技术基于通过变性梯度凝胶电泳 (DGGE) 分离编码 16S rRNA 的聚合酶链式反应扩增基因片段,这些片段的长度相同。对不同微生物群落的 DGGE 分析表明,分离模式中存在多达 10 个可区分的条带,这些条带很可能来自构成这些种群的许多不同物种,从而生成了种群的 DGGE 图谱。我们表明,可以识别仅占总种群 1% 的成分。使用针对硫酸盐还原菌 16S rRNA 的 V3 区特异性的寡核苷酸探针,可以通过杂交分析识别某些微生物种群的特定 DNA 片段。对在有氧条件下生长的细菌生物膜的基因组 DNA 进行分析表明,尽管硫酸盐还原菌具有厌氧性,但它们仍存在于这种环境中。我们获得的结果表明,该技术将有助于我们了解未知微生物种群的遗传多样性。
85( - %+’:e6oo:p7q jr stut stut 6wj7?:7UAPJ7,:7O6W?P6TA:7WAQ JR O>:S6QAQUAQ5:Quaquu:Quaquu:Qaov P:PQ:PQ:6PX> PAVI> PAVI> P:p:� 只有:,j7opju:pqa6w q5s \:nught a7:xjwj?vy g7 o> aq z6z:p,:o> o> o> o> o> paxs:luq 6wj7?:78 UAPJ7,:7O6W?P6AT:7OQ 67T O>:P:W6J7Q> azs s:OU [:7 QZ:7 QZ:7 QZ:XA:XA:QUQ 67T 67T 67T 6SJU:?PJ57T NAS:O67 EW6O:65 , 6WZA7: ,:6TJ[ 67T 6WZA7: QO:ZZ:Y N>: P:Q5WOQ 6P: Q5,,6PA]:T 6Q RJWWJ[Q :( % ) "+) QZ:XA:Q [:P: P:XJPT:T A7 "'# ZWJOQ' JR '# QAO:Q%)。jr [> ax> jxx5pp:t a7 6wza7:,:6t8 j [q 67t%*'a7 6wza7:qo:qo:zz:zz:y n>:75,s:p jr qz:xa:xa:xa:q p67?:t rpj, * oj *“ a7 6wza7:,:6tj [> aw:ao p67?:t rpj,“ oj%(a7 6wza7:qo:zz:y(”)= z:xa:xa:q pax> 7:qq a7xp:6q:6q:t [ao> w6oao5t:67t wj7 wj7?ao5t:ao5t:ao5t:a o5t:a o5t:k p:sp:xp:xp:xp:xp:xp:xp:6q:6 q:so: 676WA QZ:XAQUE:7:7OAJ7,:7O6W R6XAPQ'Q> Q'A:QA PAXAD [6Q QA?Q:6QJ7 ZP:Xazao6OAJ7 67T [6p,o> a7t:^y( *)= Z:XA:XA:Q pax> 7:qQ [6Q ZJQAOAU:WV XJPP:WV XJPP:W6O:W6O:W6O:W6O:w6o:t [ao> 6SJU:? 6sju:?PJ57T ́,6QQQQ ]6WZA7:,:6TJ [6wza7:QO:QO:ZZ:,NAS:,NAS:O67 EW6O:65 b:QQ PAX PAX PAX
遥感和机器学习的技术和方法论进步为推进野生动植物调查创造了新的机会。我们组建了一个实践社区(COP),以利用这些发展,以探索从管理层的角度来提高空中野生动植物监测的效率和有效性。COP的核心目标是组织遥感和机器学习方法的开发和测试,以改善支持管理决策的空中野生动植物种群调查。从2020年开始,COP合作确定了由野生动植物调查数据所告知的自然资源管理决策,重点是水鸟和海洋野生动植物。我们调查了我们的会员资格以建立1)他们使用野生动植物数量数据的管理决定; 2)在遥感/机器学习方法出现之前,如何收集这些计数数据; 3)过渡到遥感/机器学习方法学框架的动力; 4)从业者过渡到此框架时面临的挑战。本文记录了这些发现,并确定了朝着基于遥感的野生动植物调查迈向野生动植物管理方面的研究优先级。
研究生物提供了对人类生物学和疾病的宝贵见解,是功能实验,疾病建模和药物测试的基本工具。但是,人类和研究生物之间的进化差异阻碍了跨物种的有效知识转移。在这里,我们回顾了用于计算跨物种知识的最新方法,主要关注使用转录组数据和/或分子网络的方法。我们介绍了“ agnology”一词,以描述分子成分的功能等效性,而不论进化起源如何,因为在整合数据驱动的模型中,进化起源的作用可能不清楚。我们的评论介绍了跨物种的信息和知识转移的四个关键领域:(1)转移疾病和基因注释知识,(2)识别
现在,我们知道了我们的示例的基线栖息地类型和状况(状况良好的酸草)以及干预后的栖息地类型和状况将是什么(去除INNP后处于中等状态的酸草原),可以将其输入度量。以及本文未讨论的指标中的其他因素(例如,战略意义),该指标随后为基线栖息地和干预后栖息地产生生物多样性价值(以生物多样性单位进行了测量)。如果干预后栖息地的生物多样性单位得分高于基线栖息地的生物多样性单位得分,则您可以在生物多样性单位获得净收益。生成的生物多样性单元的确切数量将取决于各种因素,包括大小,位置和状况。
对被忽视和未充分利用的农作物(NUC)的探索对于解决全球粮食不安全感确实至关重要。这些营养丰富的气候富农作物通常被忽略的商业价值有限,是打击营养不良和提高粮食安全的关键,尤其是在脆弱地区。这些农作物先前尚未归类为主要农作物,主要是构成了小农户农业区,是营养丰富,气候缓解且局部适应性的(Li and Siddique,2020; Mudau等,2022)。这些农作物的侵蚀可能会阻碍穷人的营养状况和粮食安全,并且它们的更多使用可以增加营养并赋予隐藏的饥饿(Dansi等,2012; Ojuederie等,2015; Joy and Siddhuraju,2017年)。至关重要的是,我们认识到这些农作物的隐藏潜力并利用它们实现更可持续的未来。这项社论聚焦有希望的研究,展示了NUC的隐藏潜力并通过现代进步探索其利用。在本社论中展示的有关研究主题的研究范围“被忽视和未充分利用的农作物物种可持续食品和营养安全:前景和隐藏的潜力”令人印象深刻,涵盖了这些农作物的各个方面,从基因改进到其在不同领域的潜在应用。研究主题由9个出版物组成:6篇原始研究文章和3条评论,重点介绍了一些NUC在应对全球食品和营养挑战时的遗传改善,保护和利用。柑橘grandis(L.)Osbeck,通常称为Pomelo,是一种未充分利用的柑橘类水果,其潜力作为豆酮,苯酚和抗氧化剂的来源,被忽略了。
摘要 种子寿命是衡量种子在长期储存期间活力的指标,对于种质保存和作物改良计划至关重要。此外,寿命也是确保粮食和营养安全的重要特征。因此,更好地了解调节种子寿命的各种因素对于改善这一特性和尽量减少种质再生过程中的遗传漂变是必不可少的。特别是,谷物作物种子在储存过程中的变质会对农业生产力和粮食安全产生不利影响。种子变质的不可逆过程涉及不同基因和调控途径之间的复杂相互作用,导致:DNA 完整性丧失、膜损伤、储存酶失活和线粒体功能障碍。确定种子寿命的遗传决定因素并使用生物技术工具对其进行操纵是确保长期种子储存的关键。遗传学和基因组学方法已经确定了几个调节主要谷物(如水稻、小麦、玉米和大麦)寿命特征的基因组区域。然而,对包括小米在内的其他禾本科植物的研究却非常少。部署基因组学、蛋白质组学、代谢组学和表型组学等组学工具并整合数据集将精确定位影响种子存活率的分子决定因素。鉴于此,本综述列举了调节寿命的遗传因素,并证明了综合组学策略对于剖析种子变质的分子机制的重要性。此外,本综述还提供了部署生物技术方法来操纵基因和基因组区域以开发具有长期储存潜力的改良品种的路线图。