来自成像方式的误差以及由于与 IC 样品的物理相互作用而直接导致的误差。由于设计实践和制造 IC 所用材料而在 RE 工作流程中引入的噪声被列为“ 代工厂/节点技术特定 ” 误差源。最后,由于人为相互作用而发生的误差列在“ 人为因素 ” 下。讨论这些噪声源的来源文献还介绍了抑制它的方法。例如,可以通过在 IC 芯片表面沉积薄层导电材料(如碳或铂)来防止与成像相关的误差源中的传导 [18, 11]。为避免冗余,这里不再详细讨论除版图特定误差源之外的各个噪声源。版图特定误差源(例如特征尺寸和接近度)是版图综合和所谓设计规则的直接结果。复杂的几何结构只有在成像方式的分辨率能力范围内才能成像。类似地,彼此靠近放置的结构也可能无法有效解析。简而言之,除非使用较小的视野或高放大倍数,否则这些特征可能会被 SEM 截断。表 1 显示了讨论每个错误源及其解决方法的著作。引用的著作中还提供了全面的模型验证。无法抑制或预防的错误源作为合成图像生成工作流程的一部分,以填充数据集。另一个值得关注的是,用于生成数据集的设计布局选择有限。任何数字设计的基本构建块都是标准单元。它们代表基本逻辑门、更复杂的门(例如全加器)和寄存器,并在整个设计中重复出现。流行的商业 IC 设计工具和开源标准单元库(均由 Synopsys 授权用于生成数据集)用于合成和布局布线高级加密标准 (AES) 设计。这些工具分别遵循 90nm 和 32/28nm 工艺设计套件 (PDK) 中指定的设计规则。
对于高相干性固态量子计算平台来说,微波频率下低损耗的电介质是必不可少的。在这里,我们通过测量集成到超导电路中的由 NbSe 2 –hBN–NbSe 2 异质结构制成的平行板电容器 (PPC) 的品质因数,研究了六方氮化硼 (hBN) 薄膜在微波范围内的介电损耗。在低温单光子范围内,提取的 hBN 微波损耗角正切最多在 10 −6 中间范围内。我们将 hBN PPC 与铝约瑟夫森结集成,以实现相干时间达到 25 μs 的传输量子比特,这与从谐振器测量推断出的 hBN 损耗角正切一致。与传统的全铝共面传输相比,hBN PPC 将量子比特特征尺寸缩小了约两个数量级。我们的研究结果表明,hBN 是一种很有前途的电介质,可用于构建高相干量子电路,它占用空间大大减少,能量参与度高,有助于减少不必要的量子比特串扰。广义的超导量子比特包括由电感和电容元件分流的约瑟夫森结,它们共同决定了它的能谱 1 。虽然理想情况下,组成超导量子比特的材料应该是无耗散的,但量子比特退相干的主要因素是量子比特的电磁场与有损体积和界面电介质的相互作用 2 。在典型的超导电路中,介电损耗可能发生在约瑟夫森结的隧穿势垒中,以及覆盖设备的许多金属和基底界面的原生氧化层中 3、4 。这些电介质通常是具有结构缺陷的非晶态氧化物,可以建模为杂散两能级系统 (TLS)。虽然这些 TLS 的微观性质仍有待完全了解,但已确定 TLS 集合与超导量子电路中的电磁场之间的相互作用限制了量子比特的相干性和超导谐振器的品质因数。人们还怀疑 TLS 可能存在于设备制造过程中留下的化学残留物的界面处 4、5。
通过 ALD 循环次数可以实现区域选择性沉积 (ASD)。然而,对薄膜生长的横向控制,即区域选择性沉积 (ASD),对于 ALD 来说要困难得多。尤其微电子应用需要 ASD 来满足制造要求,因为关键特征尺寸缩小到纳米级,而且通过自上而下的光刻方法进行图案化变得越来越具有挑战性。[2,3] 光刻掩模需要以纳米级精度对准,即使是最轻微的掩模错位也必然会导致边缘位置误差 (EPE)。在 ALD 中实现 ASD 的传统方法可分为三大类:1) 非生长区域钝化;2) 生长区域的活化;3) 使用固有选择性沉积化学。在类别 (1) 中,非生长区域用钝化自组装单分子层 (SAM) 或聚合物膜进行功能化。 [4,5] 通常,当前体吸附在非理想组装或部分降解的 SAM 上时,会发生选择性损失。吸附在 SAM 上的前体分子作为后续前体剂量的反应位点,从而丧失选择性。[2] 在下一个处理步骤之前,还必须完全去除钝化层。在类别 (2) 中,生长区域表面在 ASD 之前进行功能化,以实现薄膜生长。[6–7] 然后,薄膜仅沉积在功能化表面上,而其他区域保持清洁。这种方法规定了非生长和功能化生长表面上的薄膜成核的明显对比。因此,它主要限于金属 ALD 工艺,因为金属表面比其他表面更容易成核。此外,需要仔细控制剂量以维持生长选择性。由于 ASD 的活化层被 ALD 膜掩埋,因此下一个处理步骤可以直接进行。在类别 (3) 中,即固有选择性 ALD,选择性完全由前体与基底上不同材料表面之间的反应决定。在正在制造的薄膜器件结构表面上,不同的材料暴露于 ALD 前体,但薄膜仅生长在某些优选材料上,从而定义生长区域。这是真正的自下而上的处理,将整体图案化步骤减少到最低限度。由于图案自对准,因此排除了 EPE。出于这些原因,(3) 是 ASD 的一个非常有吸引力的选择,但控制表面化学以在几个 ALD 循环中保持 ASD 极具挑战性。因此 (3) 主要限于金属的 ASD。[8–9]
* 通讯作者:Daniel STRATULAT,daniel.stratulat-carabut@iis.utm.md 协调员:Corina TINTIUC,大学助理,TUM 外语系 摘要。微技术无处不在,已成为我们日常生活中不可或缺的一部分,影响着医疗保健、消费电子产品、汽车安全、环境监测和航空航天。人体植入物领域从微处理器中受益匪浅,因为它使科学家能够开发新方法来治疗疾病或借助电子设备升级人体。该领域的最新创新彻底改变了我们使用微芯片改善人类生活的方式,包括改进假肢、提高生产力和治疗残疾。新的实施有可能对医疗保健领域产生根本性影响,并可能使超人类主义概念合法化,超人类主义理论提倡使用植入技术来增强人体,从而大大提高人的智力、寿命和整体幸福感。因此,本文的范围是研究这些创新的实现,以推断这项技术的发展方向,以及我们对未来这项技术的期望。关键词:植入物、微芯片、人工智能、假肢、超人类主义。简介微技术是一个通用术语,指的是特征尺寸约为微米的技术,常用于电子产品。这种概念的发展始于 70 年代初微型晶体管的引入,并已发展成为我们日常生活中使用的大多数设备的组成部分,例如电线、传感器和电阻器。微芯片通常与计算机或手机有关,尽管它们也有广泛的非传统应用,例如在医学领域使用微技术来增强人体和治愈或治疗某些疾病,本文将对此进行探讨。微电子在医疗领域的潜力 当提到电子技术时,人们首先想到的并不是医疗保健,但计算机和微芯片的进步使研究人员和医生能够更快地诊断患者并提出更有效的治疗方法,尤其是在外科手术中。世界上许多人必须面对的一个问题是永久性丧失行动能力,需要使用轮椅等辅助工具。在这种情况下,除了适应低行动能力的生活方式外,别无他法。微技术有可能永久改变身体残疾人群的生活,借助大脑和脊椎植入物,可以恢复腰部以下的运动能力。这样的突破发生在 2023 年 5 月,一对植入物使患者能够通过大脑和脊髓之间的数字桥梁正常站立并再次行走,这显示出有朝一日可能改变瘫痪患者生活的潜力。其中一个植入物位于患者大脑上方,可解码电信号,从而改善运动能力。这个顶部微芯片与连接到
16.摘要 本报告提供了多年努力的背景、动机和结果,旨在了解和开发一个框架来解决商用现货 (COTS) 电子系统中使用的可靠性预测方法中的差距。将 COTS 电子设备集成到航空电子系统中具有更大的计算能力优势,从而可以实现卓越的飞行导航、跟踪、制导和通信处理能力,以及更卓越的电子显示器、地图和复杂的处理算法。由于制造量大,使用 COTS 电子设备具有质量更好的优势。然而,随着特征尺寸缩小到深亚微米级,COTS 的缩放引入了半导体寿命有限的问题,因为对不同类型的故障机制的敏感性越来越高。过时的可靠性预测方法无法模拟这些新技术或充分支持可靠的航空航天系统设计。最广泛使用的组件可靠性预测手册 MIL-HDBK-217 的最后一次发布更新是在 1995 年。2009 年,成立了一个由政府和行业组织组成的工作组来修订该手册。MIL-HDBK-217 修订版 G 于 2010 年 5 月完成,并将进行协调的政府行业审查。修订版 G 的发布被国防标准化计划办公室搁置,自 2010 年完成以来一直处于搁置状态。政府在研发方面的支出普遍削减,使得重新修订 MIL-HDBK-217 的前景变得遥不可及。2011 年,航空飞行器系统研究所 (AVSI) 的可靠性路线图项目 (支出授权 [AFE] 74) 确定了当前可靠性预测方法中存在的差距,并建立了一种提高可靠性预测能力的方法。该路线图由行业共识确定优先级,使用质量功能部署来组织各种行业观点的输入,以满足对高可靠性电子系统的需求。在路线图中确定需求并确定优先级后,AVSI 于 2012 年启动了 AFE 80 项目,以提供满足这些需求的框架。该框架的关键要素之一是对新可靠性模型和方法进行验证、校准和确认的标准方法。AFE 80 项目发现行业、学术界和政府在处理这些步骤的方式上缺乏一致性。17.新可靠性方法的广泛接受不仅取决于技术上可靠的定义方法,还取决于严格和标准的验证方法。它寻求航空航天界关键联系人的帮助,以创建一种关于如何定义和完成验证、校准和确认的共识方法。由于当前可用的可靠性模型尚未更新为较新且经过验证的版本,开发人员将没有准确的方法来设计和管理未来电子系统的可靠性。快速变化的电子技术不断引入新的故障机制,并要求对所有类型的电子零件准确评估新的可靠性模型。集成系统的复杂性使得维护包含寿命有限组件的系统变得困难。挑战包括为寿命有限组件找到合适的替代品。组件过时促使设计用可能并不总是向后兼容的新技术替换复杂组件。这在集成和时序方面带来了新问题,并可能推动其他组件、子系统和系统的级联升级。虽然 AFE 83 的推出是为了满足半导体器件故障可靠性预测模型的实际物理需求,但运行可靠性计划 (AFE 84) 的推出,部分是为了通过应用 AFE 80 开发的验证框架来检查 AFE 83 开发的模型的验证。关键词 航空航天飞行器系统研究所、机载电子硬件、商用现货、COTS 组件、设计保证、电解电容器可靠性、基于电子的可靠性支持、环境对可靠性的影响、故障率、集成电路、集成可靠性、故障物理学、质量功能部署、可靠性分析、可靠性模型、可靠性模型校准、可靠性模型电子表格、可靠性模型验证 &