凸分析47-860 A3 TUE-TUE-THU 10:00-11:50 5219 PENA,J。组织理论研讨会(Micro)47-888 A Wed 1:00-3:50 5222 Cohen,Cohen,T。Proseminar in org in org in org。rsrch:社会科学中的机制47-889 A3星期五2:00-4:50 5222 Shea,C。
数字取证调查员通常需要从包含 NAND 闪存的被扣押设备中提取数据。许多此类设备都受到物理损坏,导致调查员无法使用自动化技术提取设备中存储的数据。相反,调查员转向芯片分析,他们使用基于热的程序从设备中物理移除 NAND 闪存芯片,并直接访问芯片以提取存储在芯片上的原始数据。我们对设备被扣押后引入多层单元 (MLC) NAND 闪存芯片的错误进行分析。我们有两个主要观察结果。首先,在设备被扣押和数字取证调查员进行数据提取之间,由于 NAND 闪存单元的电荷泄漏(称为数据保留错误),可能会引入大量错误。其次,当执行基于热的芯片移除时,由于施加到芯片上的高温大大加速了电荷泄漏,NAND 闪存中存储的数据中的错误数量可能会增加两个或更多个数量级。我们证明基于芯片分析的法医数据恢复程序具有相当大的破坏性,并且通常会导致 NAND 闪存中的大部分数据无法纠正,从而无法恢复。为了减轻法医恢复过程中引入的错误,我们探索了一种新的基于硬件的方法。我们利用现代 NAND 闪存芯片中实现的一种细粒度读取参考电压控制机制,称为读取重试,它可以补偿由于 (1) 保留损失和 (2) 基于热的芯片移除而发生的电荷泄漏。读取重试机制成功减少了错误数量,只要芯片在被扣押前没有被大量使用,原始数据就可以在我们测试的芯片中完全恢复。我们得出结论,读取重试机制应该作为法医数据恢复过程的一部分。© 2017 作者。由 Elsevier Ltd 代表 DFRWS 发布。这是一篇根据 CC BY-NC-ND 许可证开放获取的文章( http://creativecommons.org/licenses/by-nc-nd/4.0/ )。
Thanassis Rikakis 热衷于组建涵盖艺术和技术学科的跨学科团队,以创造具有影响力的创新。去年夏天,他将自己的技能带到了卡内基梅隆大学,那里是没有人比他做得更好的地方。8 月,Rikakis 加入卡内基梅隆大学,担任设计、艺术和技术副教务长。他是美术学院设计学院的全职教授,并在音乐学院和工程学院的生物医学工程系担任兼职教授。他还负责管理该大学的娱乐技术中心 (ETC)。自从从亚利桑那州立大学来到卡内基梅隆大学后,Rikakis 一直在与大学内外的人士会面,收集信息,帮助他更好地了解使卡内基梅隆大学成为世界领先的艺术和技术大学的协同作用。他说他期待与那些帮助他树立声誉的人一起工作。The Piper 最近采访了 Rikakis,谈论了他的新角色、大学以及他来到匹兹堡的道路。
OSRVT 是美国陆军的一项计划,在战场上有数千个单位参与,同时还为美国海军陆战队和特种作战司令部提供支持。最初的实施目的是直接从有人驾驶或无人驾驶飞机向地面部队提供全动态视频,最新的 OSRVT 配置首次实现了对飞机有效载荷的 LOI 3 控制。这一突破增强了作战人员的态势感知能力,并在有人驾驶-无人驾驶协同场景中,实现了飞机间的数据共享。
1986年加入住友金属工业公司(现新日本制铁株式会社)。从事研发工作后,1990年开始在专利部门工作,担任知识产权部部长。2015年担任新日铁住友金属研究所(现新日铁住友金属研究所)所长,2018年担任知识产权本部长,2022年4月担任特别研究部长。
Martin Brinkmann博士,ICS培训2:结构和形态对掺杂聚合物半导体共轭聚合物(CPS)的热电特性的影响在塑料电子中以半导体和导电聚合物的形式无处不在,这些聚合物是诸如诸如太阳能电池,现场效应型和热型晶体管和热型晶体和热型的诸如诸如太阳能电池中的集中的。利用这种共轭材料的各向异性特性要求采用先进有效的生长和方向方法。首先,此贡献回顾了塑料电子中使用的共轭聚合物的不同比对方法。第二,我们介绍了高温摩擦方法的艺术状态,该方法广泛用于制造排列的聚合物半导体(PSC)和导电聚合物(CP)膜。示例用于说明这种大规模取向的多功能方法如何用于设计具有各向异性光学特性的设备。Finally, we emphasize the recent progress made in the fabrication of highly ordered and oriented CPs by controlled doping of well-crystallized PSCs such as regioregular poly(3- hexylthiophene-2,5-diyl) and poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2- b ]thiophene].将掺杂分子引入并修改这些PSC的晶体晶格的方式。讨论了聚合物的半晶结构对定向薄膜的掺杂和产生的热电性能的影响。伊夫琳·马丁(Evelyne Martin)博士,ICUBE培训3:热瞬变的原子尺度建模:应用于纳米结构,无定形和聚合物材料。在本演示文稿中,我将使用从头算分子动力学(将召回的原理)模拟在原子量表上描述的材料中的热瞬变。i将显示如何用于提取导热率及其由于微型化而引起的变化。我将介绍不同材料,晶体,无定形和有机材料的情况,并讨论观察到的行为的基础。
京都大学发展科学系1号,京都俄克一有纪念医院2,儿科系儿科学系,儿科部发育发展部,发育发展局,开发部,DNA DNA研究所,喀祖萨DNA研究所,喀祖萨DNA研究所,喀祖萨DNA研究所,喀祖萨DNA研究所,哥伦比亚治疗局,医学研究院,哥伦比亚治疗局,公共利益基金会。 GIFU大学医学研究生院儿科科学系儿科科学系,儿科科学研究生院,儿科科学研究生院,发育发展病理学系,儿科发育病理学系,儿科学系,医学院研究生院,医学和牙科医学院(Tokyo Medical and Depentical of Science of Science of Science)东京医学和牙科大学医学研究生院儿科学学院(东京科学大学)8,儿科科学,国民国民大学,9,国家发展性发展病理学遗传学研究中心9
特隆赫姆市是一座现代化的欧洲城市,拥有丰富的文化景观。特隆赫姆是挪威的创新之都,人口为 20 万。挪威的福利制度,包括医疗保健、学校、幼儿园和整体平等,可能是世界上最好的。专业的儿童日托很容易获得。此外,特隆赫姆提供了很好的教育机会(包括国际学校)和享受自然、文化和家庭生活的可能性,犯罪率低,空气质量好。
约隆达·“YR”·萨蒙斯准将同时担任 HQDA OTSG 政策与兵力整合主任和 USAMEDCOM 作战副参谋长 G-3/5/7。萨蒙斯准将于 1992 年 5 月入伍。她毕业于阿肯色州阿卡德尔菲亚的瓦希塔浸会大学。她于 1993 年 10 月开始服现役。她的职责包括:弗吉尼亚州福尔斯彻奇国防卫生总部副卫生局长/卫生局长过渡团队负责人特别助理;华盛顿州刘易斯堡第 62 医疗旅指挥官;医疗服务团副团长;比利时蒙市盟军最高司令部欧洲总部 (SHAPE) 诊所指挥官和布鲁塞尔陆军健康诊所指挥官;肯塔基州诺克斯堡人力资源司令部医疗服务团分部首席和上校任务官;弗吉尼亚州福尔斯彻奇国防卫生总部美国陆军军医局长执行官;弗吉尼亚州福尔斯彻奇国防卫生总部美国陆军军医局长助理执行官;弗吉尼亚州贝尔沃堡北方地区医疗司令部营长;华盛顿哥伦比亚特区陆军参谋部陆军医疗部政策整合员;马里兰州德特里克堡美国陆军医学研究与物资司令部部队指挥官/DCSPER;华盛顿州刘易斯堡第 62 医疗旅 S-1 旅/伊拉克自由行动第一军联合医疗特遣队 S-1 特遣队;堪萨斯州莱文沃思堡美国陆军指挥参谋学院学生;德国海德堡第 30 医疗旅 G-3 航空旅;德国威斯巴登第 421 撤离营 S-1 营; HHC 担任华盛顿州刘易斯堡第 62 医疗旅的连长。作战任务包括国防部 COVID-19 应对计划(德克萨斯州);伊拉克自由行动第一军联合医疗特遣部队 S-1 旅,伊拉克;伊拉克自由行动第五军第 30 医疗旅第 421 医疗后送营 S-1 营,伊拉克;南方守望行动第 62 医疗旅第 54 医疗后送连作战排长,科威特。BG Summons 拥有霍华德大学神学院博士学位(伦理与社会正义);美国陆军战争学院 – 战略研究硕士;查普曼大学 – 文学硕士 – 组织领导;和瓦希托浸会大学 – 文学学士 – 生物学。她的军事教育包括美国陆军战争学院、美国陆军指挥参谋学院、联合兵种服务参谋学校和陆军医疗部军官基础和高级课程。BG Summons 的勋章和徽章包括国防优秀服务勋章、功绩勋章(附有 1 个橡树叶簇)、铜星勋章、功绩服务奖章(带有 8 枚橡树叶簇);陆军表彰奖章(带有 3 枚橡树叶簇);陆军成就奖章(带有 3 枚橡树叶簇);专家野战医疗徽章;陆军航空徽章;陆军参谋身份识别徽章。BG Summons 是美国陆军第一位非裔美国女性医疗后送飞行员,也是第一位指挥 SHAPE 医疗设施的女性。她是军事医疗功绩勋章、圣迈克尔勋章和 Delta Sigma Theta 姐妹会的骄傲成员。最后,她获得了 2009 年 Karen Wagner 领导力奖,并于 2012 年入选阿肯色州名人堂。BG Summons 喜欢与她的伴侣 Renee K. Harrison 博士和他们的匈牙利维兹拉犬 Satchmo 一起旅行。她还喜欢阅读、打高尔夫球、大笑以及与家人和学员共度时光。