IFC正在支持市政当局和私营部门客户实施电力最后一英里的解决方案,从确定启用政策到开发可以扩大规模的创新飞行员项目。IFC利用其经验来提供关键建议,以扩大投资机会并动员私营部门资源。IFC还可以通过准备和范围的项目来使供应链脱碳,以使最后一英里的物流电气化。
摘要。本文介绍了用于图像识别的深度卷积神经网络训练的性能-能量权衡研究。使用配备 Nvidia Quadro RTX 6000 和 Nvidia V100 GPU 的系统测试了几种具有代表性且广泛采用的网络模型,例如 Alexnet、VGG-19、Inception V3、Inception V4、Resnet50 和 Resnet152。使用 GPU 功率上限,我们发现除了默认配置之外,还可以最小化三个不同的指标:能量 (E)、能量延迟积 (EDP) 以及能量延迟总和 (EDS),从而节省大量能源,EDP 和 EDS 的性能损失较低到中等。具体来说,对于 Quadro 6000 和最小化 E,我们获得了 28.5%–32.5% 的节能效果;对于 EDP,我们获得了 25%–28% 的节能效果,平均性能损失为 4.5%–15.4%;对于 EDS (k=2),我们获得了 22%–27% 的节能效果,平均性能损失为 4.5%–13.8%。对于 V100,我们发现平均节能效果为 24%–33%;对于 EDP,我们获得了 23%–27% 的节能效果,平均性能损失为 13%–21%;对于 EDS (k=2),我们获得了 23.5%–27.3% 的节能效果,平均性能损失为 4.5%–13.8%。
b'Introfuction。现代宇宙学的目标之一是曲率扰动P(K)的原始功率谱的表征。在通货膨胀期间,在辐射和物质时代的哈勃半径经典和重新输入膨胀的半径时,长波长量子波动扩增,为重力不稳定的初始种子提供了宇宙大规模结构中的初始种子。P(k)上最严格的约束来自宇宙微波背景(CMB)各向异性的表达,揭示了在范围内非常大的尺度上的近规模不变的,略带红色的频谱[0。001,0。1] mpc \ xe2 \ x88 \ x92 1。Planck DR3数据在k = 0时限制了p(k)的幅度a s。05 MPC \ XE2 \ x88 \ x92 1及其Spec-Tral索引到LN 10 10 A = 3。044 \ xc2 \ xb1 0。014和N S = 0。9649 \ xc2 \ xb1 0。0042分别为68%Cl [1]。 银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。 Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。 如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。0042分别为68%Cl [1]。银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。最近的研究表明,这种标量引起的重力波背景(SIGWB)可以为PTA检测提供一个能力的解释,并且可能会对来自贝叶斯观察的许多其他候选者进行案例[9,10](但是,请参阅[9 \ xe2 \ x80 \ x80 \ x9313],以ellite tountion of Extimation of Exteration to inton of toseation portod of tosod of tosod of to pod stod of pod,以供pbod of profod of prod。 [11 \ xe2 \ x80 \ x9316]用于替代分析)。因此,设计这一假设的进一步检验至关重要,并且与cos-'
简介:这项研究的目的是为心力衰竭(HF)的患者实施医疗保健模型,并评估研究人群中男女之间的差异。材料和方法:通过护理和广泛的教育小组(饮食建议,体育锻炼,利尿剂滴定,心理支持),重点放在预防上。所有患者均进行了基础线心脏病学咨询,并提供有关治疗,自我护理,饮食和运动的建议。基于对体重和血压HF患者的定期测量,由护士,初级保健疗法医生征服,并在必要时转介给心脏病学家。该问卷是在入学后的所有基线患者中进行的,以及经过3个月的远程监控和广泛的教育过程。结果:该研究最终包括140名平均年龄为66岁的男性(SD:56-71)和163名平均年龄为64岁的女性(58-72)。过去78%的男性和73%的女性(p = 0.40)和31%的男性和16%的女性被宣布为心肌梗塞(p = 0.002)。男性经常在心脏骤停(7.8%比1.2%; p = 0.004)中幸存下来,并且与妇女相比具有可植入的心脏装置(16%vs. 3%; P = 0.001)。男性患者报告的饮酒量明显更高,吸烟和任何体育锻炼的频率更低。女性比患有癌症,抑郁症和血栓栓塞事件的男性要多得多,而在阻塞性睡眠中,女性的频率较低。只有35%的男性和19%的女性男性的平均左心室射血分数(LVEF)为43%(SD:30-58),女性为57%(45-63)(P = 0.0001),而女性主要因心力衰竭而遭受保留的射血分数。在过去12个月内,性别之间没有差异。The men, despite lower LVEF, felt short of breath/tired when climbing the stairs up than women (3 [2–4] vs. 2 floors [1–3]; p = 0.001), had higher distance in meters when walking on flat ground (400 [200–400] vs. 300 m [100–400]; p = 0.0001), and less frequently had to get up to go to the toilet at night ( p = 0.03).男性在休息时的呼吸急促,下肢肿胀以及夜间醒来的呼吸急促也大大减少。
离婚率在全球范围内一直在上升,对家庭,社区和社会产生了深远的影响(Amato,2018年)。这种趋势在桑给巴尔尤其值得注意,那里的文化,宗教和社会经济因素独特地塑造了婚姻和家庭生活的动态。在Wete地区,离婚的越来越流行已成为一个关键问题,引起了人们对其根本原因的担忧以及对个人和社区的更广泛影响。现有研究强调了几个因素,包括经济不稳定,家庭冲突和社会规范的转变(Cherlin,2020; McLanahan&Percheski,2019)。经济挑战通常会损害婚姻关系,因为经济困难会加剧不满和冲突,从而增加了离婚的可能性(Kalmijn,2021年)。超越财务斗争,离婚会影响个人的心理健康,并将其与抑郁症,焦虑和情绪不稳定联系起来,尤其是在儿童中(Hetherington&Elmore,2019年)。道德问题也很重要,因为离婚率上升挑战了传统价值观并改变了社会对婚姻的看法,从而可能侵蚀了社区的道德结构(Furstenberg,2018年)。此外,与离婚相关的压力已被证明会削弱身体健康,增加了对疾病的脆弱性(Umberson等,2020)。本研究旨在检查驱使区离婚率上升的原因和影响的原因和影响,并提出了可行的解决方案。具体来说,该研究旨在解决以下研究问题:导致离婚兴起的主要因素是什么?离婚对个人和社区的影响是什么?可以实施哪些策略来减轻离婚率上升?本文的结构如下:第1节介绍了有关离婚趋势及其含义的相关文献的回顾。第2节概述了本研究中采用的方法,包括研究设计,抽样策略和数据收集方法。第3节讨论了有关降低Wete地区离婚率的原因,效果和提议解决方案的关键发现。本文以对决策者,社区领导者和其他利益相关者的建议结束。
*通讯作者:托比亚斯·海因德尔(Tobias Heindel),柏林技术大学固态物理研究所,Hardenbergstraße36,10623柏林,德国,电子邮件:tobias.heindel@tu-berlin.de。https://orcid.org/0000-0003-1148-404x Lucas Rickert,Daniel A. Vajner,Martin von Helversen,Sven Rodt和Stephan Reitzenstein,固态物理学研究所lucas.rickert@tu-berlin.de(L。Rickert)。https://orcid.org/0000-0003-0329-5740(L.Rickert)。 https://orcid.org/0000-0002-4900-0277(D.A. vajner)。 https://orcid.org/0000-0003-4494-4698(M. von Hervelsen)。 https://orcid.org/0000-0002-1381-9838(S。Reitzenstein)Kingaicołnacz,弗罗克劳夫科学技术大学的光学和光子学系,WybrzeêeeStanisVAwaWyspiańskiego27,50-370-370-370-poloclaw。 https://orcid.org/0000-0002-1387-9371 Hanqing Liu,Shulun Li,Haiqiao Ni和Zhichuan Niu,光电材料和设备的主要实验室中国科学院学院材料科学与光电工程中心,北京100049,中国,电子邮件:zcniu@semi.ac.ac.cn(Z. NIU)。 https://orcid.org/0009-0004-7092-2382(H。Liu)。 https://orcid.org/0000-0001-7645-8243(G。sęk)。 https://orcid.org/0000-0001-9602-8929(A.Musiał)https://orcid.org/0000-0003-0329-5740(L.Rickert)。https://orcid.org/0000-0002-4900-0277(D.A. vajner)。 https://orcid.org/0000-0003-4494-4698(M. von Hervelsen)。 https://orcid.org/0000-0002-1381-9838(S。Reitzenstein)Kingaicołnacz,弗罗克劳夫科学技术大学的光学和光子学系,WybrzeêeeStanisVAwaWyspiańskiego27,50-370-370-370-poloclaw。 https://orcid.org/0000-0002-1387-9371 Hanqing Liu,Shulun Li,Haiqiao Ni和Zhichuan Niu,光电材料和设备的主要实验室中国科学院学院材料科学与光电工程中心,北京100049,中国,电子邮件:zcniu@semi.ac.ac.cn(Z. NIU)。 https://orcid.org/0009-0004-7092-2382(H。Liu)。 https://orcid.org/0000-0001-7645-8243(G。sęk)。 https://orcid.org/0000-0001-9602-8929(A.Musiał)https://orcid.org/0000-0002-4900-0277(D.A.vajner)。https://orcid.org/0000-0003-4494-4698(M. von Hervelsen)。https://orcid.org/0000-0002-1381-9838(S。Reitzenstein)Kingaicołnacz,弗罗克劳夫科学技术大学的光学和光子学系,WybrzeêeeStanisVAwaWyspiańskiego27,50-370-370-370-poloclaw。https://orcid.org/0000-0002-1387-9371 Hanqing Liu,Shulun Li,Haiqiao Ni和Zhichuan Niu,光电材料和设备的主要实验室中国科学院学院材料科学与光电工程中心,北京100049,中国,电子邮件:zcniu@semi.ac.ac.cn(Z. NIU)。https://orcid.org/0009-0004-7092-2382(H。Liu)。 https://orcid.org/0000-0001-7645-8243(G。sęk)。 https://orcid.org/0000-0001-9602-8929(A.Musiał)https://orcid.org/0009-0004-7092-2382(H。Liu)。https://orcid.org/0000-0001-7645-8243(G。sęk)。https://orcid.org/0000-0001-9602-8929(A.Musiał)https://orcid.org/0000-0002-9566-6635(Z.Niu)PawełWyborski,弗罗克瓦夫(Wroclaw)的实验物理学系,斯坦尼斯·威斯皮亚斯基(StanisławWyspiański)27,50-370-Poloclaw,poloclaw,poland,wroclaw Unive Science of Science of Science of Science of Science and Inive Science of Science and Inive Science of Science and Technology of Science of Science and Technoic丹麦技术大学电气和光子学工程系,2800,KGS,Lyngby,Denmark Grzegorzsęk和AnnaMusiał,AnnaMusiał,弗罗克瓦夫科学与技术大学实验物理系,StanisławWyspiański海岸,Poland,50-370 Wroclaw。
*通讯作者:托比亚斯·海因德尔(Tobias Heindel),柏林技术大学固态物理研究所,Hardenbergstraße36,10623柏林,德国,电子邮件:tobias.heindel@tu-berlin.de。https://orcid.org/0000-0003-1148-404x Lucas Rickert,Daniel A. Vajner,Martin von Helversen,Sven Rodt和Stephan Reitzenstein,固态物理学研究所lucas.rickert@tu-berlin.de(L。Rickert)。https://orcid.org/0000-0003-0329-5740(L.Rickert)。 https://orcid.org/0000-0002-4900-0277(D.A. vajner)。 https://orcid.org/0000-0003-4494-4698(M. von Hervelsen)。 https://orcid.org/0000-0002-1381-9838(S。Reitzenstein)Kingaicołnacz,弗罗克劳夫科学技术大学的光学和光子学系,WybrzeêeeStanisVAwaWyspiańskiego27,50-370-370-370-poloclaw。 https://orcid.org/0000-0002-1387-9371 Hanqing Liu,Shulun Li,Haiqiao Ni和Zhichuan Niu,光电材料和设备的主要实验室中国科学院学院材料科学与光电工程中心,北京100049,中国,电子邮件:zcniu@semi.ac.ac.cn(Z. NIU)。 https://orcid.org/0009-0004-7092-2382(H。Liu)。 https://orcid.org/0000-0001-7645-8243(G。sęk)。 https://orcid.org/0000-0001-9602-8929(A.Musiał)https://orcid.org/0000-0003-0329-5740(L.Rickert)。https://orcid.org/0000-0002-4900-0277(D.A. vajner)。 https://orcid.org/0000-0003-4494-4698(M. von Hervelsen)。 https://orcid.org/0000-0002-1381-9838(S。Reitzenstein)Kingaicołnacz,弗罗克劳夫科学技术大学的光学和光子学系,WybrzeêeeStanisVAwaWyspiańskiego27,50-370-370-370-poloclaw。 https://orcid.org/0000-0002-1387-9371 Hanqing Liu,Shulun Li,Haiqiao Ni和Zhichuan Niu,光电材料和设备的主要实验室中国科学院学院材料科学与光电工程中心,北京100049,中国,电子邮件:zcniu@semi.ac.ac.cn(Z. NIU)。 https://orcid.org/0009-0004-7092-2382(H。Liu)。 https://orcid.org/0000-0001-7645-8243(G。sęk)。 https://orcid.org/0000-0001-9602-8929(A.Musiał)https://orcid.org/0000-0002-4900-0277(D.A.vajner)。https://orcid.org/0000-0003-4494-4698(M. von Hervelsen)。https://orcid.org/0000-0002-1381-9838(S。Reitzenstein)Kingaicołnacz,弗罗克劳夫科学技术大学的光学和光子学系,WybrzeêeeStanisVAwaWyspiańskiego27,50-370-370-370-poloclaw。https://orcid.org/0000-0002-1387-9371 Hanqing Liu,Shulun Li,Haiqiao Ni和Zhichuan Niu,光电材料和设备的主要实验室中国科学院学院材料科学与光电工程中心,北京100049,中国,电子邮件:zcniu@semi.ac.ac.cn(Z. NIU)。https://orcid.org/0009-0004-7092-2382(H。Liu)。 https://orcid.org/0000-0001-7645-8243(G。sęk)。 https://orcid.org/0000-0001-9602-8929(A.Musiał)https://orcid.org/0009-0004-7092-2382(H。Liu)。https://orcid.org/0000-0001-7645-8243(G。sęk)。https://orcid.org/0000-0001-9602-8929(A.Musiał)https://orcid.org/0000-0002-9566-6635(Z.Niu)PawełWyborski,弗罗克瓦夫(Wroclaw)的实验物理学系,斯坦尼斯·威斯皮亚斯基(StanisławWyspiański)27,50-370-Poloclaw,poloclaw,poland,wroclaw Unive Science of Science of Science of Science of Science and Inive Science of Science and Inive Science of Science and Technology of Science of Science and Technoic丹麦技术大学电气和光子学工程系,2800,KGS,Lyngby,Denmark Grzegorzsęk和AnnaMusiał,AnnaMusiał,弗罗克瓦夫科学与技术大学实验物理系,StanisławWyspiański海岸,Poland,50-370 Wroclaw。
紧急决议强烈敦促俄亥俄州公共事业委员会 (PUCO) 拒绝 Enbridge Gas Ohio 增加 25.5% 收入的请求,而是采纳 PUCO 工作人员的建议,将收入减少 24.6-27.5%,并进一步敦促 PUCO 拒绝 Enbridge Gas Ohio 修改其费率基础的所有请求,因为此类修改不公平地加重了克利夫兰市居民的负担,尤其是有色人种和低收入居民。阅读第一次报告并提交给市书记员阅读第二次市书记员阅读第三次阅读 2024 年 11 月 18 日总统市书记员批准市长记录第 111 卷第页发表在城市记录中
1 Institute of Solid State Physics, Technical University Berlin, Hardenbergstraße 36, 10623 Berlin, Germany 2 Department of Optics and Photonics, Wroclaw University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-730 Wroclaw, Poland 3 State Key Laboratory for Superlattice and Microstructures, Institute of Semiconductors, Chinese Academy中国北京100083科学,北京4材料科学与光电工程中心,中国科学院,北京大学100049,中国100049,中国5个实验物理学系,弗罗克劳夫科学技术系,Wybrze问StaniSławaWyspiańskiego27丹麦,2800,公斤。Lyngby,丹麦 *通讯作者:lucas.rickert@tu-berlin.de,zcniu@semi.ac.cn,tobias.heindel@tu-berlin.deLyngby,丹麦 *通讯作者:lucas.rickert@tu-berlin.de,zcniu@semi.ac.cn,tobias.heindel@tu-berlin.de
热导率(𝜿)控制热量如何在材料中传播,因此是一个关键参数,它约束光电设备的寿命和热电学(TES)的性能。在有机电子中,了解决定的是难以捉摸且具有实验性挑战。在这里,通过在不同的空间方向上测量𝜿 𝜿 𝜿 𝜿 𝜿 𝜿 𝜿,它可以统计地显示微观结构如何解锁两个明显不同的热运输方式。𝜿在远程有序聚合物中遵循标准的热传输理论:改进的排序意味着更高的𝜿和各向异性增加。𝜿随着骨架,较高的分子量和较重的重复单位而增加。在其中,电荷和热传输齐头并进,可以单独通过胶片纹理将其解耦,并由分子动力学模拟支持。,𝜿与持久性长度和重复单元的质量负相关,因此发现了异常的行为,尽管有用,但却是有用的。重要的是,对于准无形共聚合物(例如,IDT-BT)𝜿随着电荷迁移率的增加而减小,与半晶体对应物(在可比较的电力电导率下)相比,降低了10倍。最后,提供了有机半导体中高和低的特定材料设计规则。