背景和目标:玉米和水稻种植区有大量生物质废弃物未得到充分利用。在中爪哇省的格罗博根,稻壳和玉米废弃物被用作豆腐生产的能源,从而形成稻壳炭和玉米芯炭。因此,开发创新方法将稻壳和烧玉米芯废弃物转化为有经济价值的产品至关重要。本研究旨在通过分析生物质废弃物(特别是玉米芯、烧玉米芯、烧稻壳和聚丙烯废弃物)的化学特性及其相关的环境影响,确定其理想的团块混合物。方法:选择此实验设计来确定生产高质量团块的最佳材料组合。在这个设计中,材料组合是自变量,而化学特性是因变量。本研究选择的因变量来自印度尼西亚国家标准规定的参数,包括水分含量、热值、灰分和固定碳的测量。进行了生命周期评估以评估所生产的蜂窝煤产品对环境的影响。结果:研究结果表明,根据印度尼西亚国家标准参数,玉米芯蜂窝煤的质量优于烧稻壳蜂窝煤。与回收有关的生命周期评估表明,玉米芯蜂窝煤对环境的影响较小。研究表明,在生产过程中不使用塑料的玉米芯蜂窝煤具有优异的化学性能和更有利的环境影响。不含聚丙烯的玉米芯水分含量为 11.16%,灰分含量为 20.04%,固定碳含量为 77.44%,热值为每克 5,156.93 卡路里。环境影响相当于 0.387 美元的生态成本。研究结果表明,玉米芯团块具有作为替代能源或与化石燃料在混烧过程中结合的巨大潜力。结论:研究结果将有助于地方政府指导生产符合消费者质量标准的生物质团块,同时最大限度地减少环境影响。有必要进一步研究,以分析在工业应用中,特别是在格罗博根县的水泥行业中,使用团块替代化石能源或与化石燃料结合使用时遇到的障碍和挑战。
石灰土、矿渣、污泥、改性沥青等。天然有机吸附剂包括锯末、椰子壳、玉米芯废料、茶叶废料、稻壳、树皮、榛子壳、羊毛、泥炭和壳聚糖;合成吸附剂包括纳米金属氧化物、零价铁、改性纳米材料等。纳米吸附剂,特别是磁性纳米吸附剂,由于其反应性高、活性位点多、表面积大,具有巨大的工业潜力。它们的缺点包括不稳定和随之而来的聚集,这会减少它们的表面积;结果,它们的反应性降低。为了防止聚集和
来自生物质废弃物资源(如燕麦、稻壳、甘蔗渣、香蕉皮、花生壳、苹果渣和玉米芯)的硬碳因优异的可逆容量以及成本和可持续性考虑而受到广泛关注。[6–12] 生物质的天然微观结构在碳化后依然存在,提供大量缺陷和孔隙以及随机取向的伪石墨域。[13] 固有的通道和孔隙创建了相互连接的 3D 结构,改善了电解质的渗透并提供更多的钠通道和离子缓冲库。[14] 此外,一些剩余的杂原子(N、S、P 等)可以通过直接电化学活性共价键或通过引入产生电子受体态的碳空位缺陷来提供更多的储存位点。[15]
除批量模式之外的燃烧系统,反向下吸式炉(商业名称为 Oorja)运行。在过去四年中,在 JGI 火灾与燃烧研究中心,已经构思、实现和商业化了几种生物质清洁燃烧装置。这些装置构成了连续燃烧系统,主要依赖于喷射器诱导通风,需要更高的空气供应装置功率。在开发和商业化的品种中,有 (a) 具有倾斜炉排和空气供应装置的装置,适合自行进料不同密度的颗粒和类似燃料,(b) 包括用于稻壳等燃料的移动炉排的装置,(c) 水平配置的基于喷射器的空气供应和 (d) 垂直布置的喷射器配置,具有单盘或多盘装置。应用包括每小时一到几百公斤的功率水平,用户定义的可变热功率需求、短或长的燃烧区、有限的系统高度、广泛变化的密度、燃料形状和大小,例如木柴、废木、腰果壳废料、玉米芯和其他农业残留物,所有这些都采用清洁燃烧模式。虽然从燃烧科学的角度来看,期望满足这些对清洁燃烧气体燃料(如天然气或液化石油气)的需求已经足够具有挑战性,但真正最具挑战性的问题是设计一种家用烹饪解决方案(1 千克/小时水平),其生物质范围如上所述,因为