1 scanning electron microscopy reveals How plasma differentially ablates biopolymers and modifies surface characteristics of wood wodal laabar 1, Dr da Huo 2, Dr Philip David Evans 3, Arash Jamali 4 1 Laboratory of Reactivity and Solid Chemistry (LRCS), CNRS UMR7314, University of Picardy Jules Verne, Amiens, France, 2 Laboratory of反应性和固体化学(LRC),CNRS UMR7314,Picardy Jules University jules Verne,法国,法国,法国3号,3木科学系,不列颠哥伦比亚大学,加拿大温哥华,4个电子显微镜平台,Picardy Jules Veresne,Amiens,Amiens,Amiens,France 2 2 2 2,bt [2 2 2,b-BT] (1,2.3-三唑-4-基)吡啶]模式。niamh o'shea 1 1 1 1化学和三位一体生物医学学院,都柏林三一学院,都柏林,爱尔兰,爱尔兰2号琥珀中心,克兰恩,都柏林三一学院,都柏林,爱尔兰3纳米伯斯和纳米结构和纳米结构,vs₂,ws₂和mos₂,莫斯·巴尔·萨德·贝尔·萨德·贝尔德,啤酒。以色列舍娃4人体液中的4蛋白成像,以了解阿尔茨海默氏病的进展彼得·尼尔玛拉(Peter Nirmalraj)1,托马斯·施耐德(Thomas Schneider)先生2,安斯加斯·施耐德(Thomas Schneider)先生,安斯加尔·费尔贝克(Ansgar Felbecker)2 1 1 empa,苏黎世瑞士,苏黎世瑞士,2 kssg,2 kssg,2 kssg,st kssg,st gallen,st gallen,switzerland 5钻石量子量的量子,以降级为量子,以量子的量化量子,以量子的量化量子,以量子的量子降低了活性,该量子量有现年量子的固定量。 Elias-llumbet,Aldona Mzyk夫人,Claudia Reyes San Martin女士,Nuan Lin夫人,Romana Schirhagl 1大学,大学医学中心Groningen,Groningen,荷兰6各向异性3-D-D DIRAC,用于设计Terahertz Sensing Nanotennas Kelvin J.部门。A. Ooi 1 1 Xiamen University Malaysia, Sepang, Malaysia 7 EELS Compton scattering and the electronic structure of twisted WS2 bi-layers Alina Talmantaite 1 , Yaoshu Xie 2 , Assael Cohen 3 , Pranab Mohapatra 3 , Ariel Ismach 3 , Teruyasu Mizoguchi 2 , Stewart Clark 1 , Budhika Mendis 1 1 Dept of物理学,达勒姆大学,英国,2工业科学研究所,日本东京大学,3 3。材料科学与工程,以色列,以色列8的材料科学与工程学作用,语音子和等离子体非弹性散射在bragg衍射束强度上的作用Budhika Mendis 1 1 1 1物理学,英国达勒姆大学,UK 9电化学液化液化和INTORERY SERVENION INTRERIGHT IN INTRORIGH INTRERIGHTZ时Z ZHIYUUAN INTRONIDER SERVICATION INTRORIAN LITHIUM INTERICAL和INTORRIPHAN INTORRIPAL INTORERIG香港城市大学海洋污染实验室,香港10开发电子显微镜的生物学样本制备方法,使用三明治冰冻技术Masashi Yamaguchi 1,Azusa tokahasi-nakaguchi博士
2022 年 9 月 19 日,由 Staff Sgt. 撰写。Ryan Lackey 第 374 空运联队公共事务部敏捷作战参与 (ACE) 是美国空军的愿景,旨在培养能够灵活适应不断变化的任务的多用途飞行员。但飞行员还可以在军事职责之外学习有用的技能,这些技能可以在意外情况下发挥作用。 2022年8月10日早上,在横田空军基地航站楼大门外的一条繁忙道路上,一辆汽车与一辆由两名日本人驾驶的摩托车发生碰撞。两名来自加州空军国民警卫队应急管理排(第 374 工程兵中队)的士兵目睹了这一事件并立即赶往现场。 “我当时在大楼前面,有人跑出来告诉我发生了事故,”他说。“我的同事普拉纳伊和我互相看了一眼,他说,‘轮到我们了(他总是处理私事) ’。”“然后他们进入工作状态并出发救援飞机,”第 129 救援联队应急管理专家高级飞行员罗伯特·斯克鲁格斯 (Robert Scruggs) 说。两名飞行员迅速评估了情况,将受伤的日本人抬到安全地带,让其他车辆通过,然后独自评估伤者的情况,等待救援人员到达。他们继续使用医疗设备进行急救他们带来的工具包。 “我们熟悉这种情形,但他们甚至没有考虑是否应该提供帮助就采取行动了,”第 129 救援联队应急管理学员、高级飞行员普拉奈·曼吉亚玛拉尼 (Pranay Mangiamalani) 说道。“他们两人在从事民事工作时都多次这样做过。” “我们有处理此类情况的经验,所以我们立即实施了急救,请航空自卫队成员担任翻译,并负责处理现场事务,”他说道。警方与救护人员在事故发生后30分钟内赶到,并将救治工作交给刚刚赶到的日本救护人员,向其说明伤势程度及所采取的急救措施,以缩短进一步救治所需的时间。我把我写的清单递给了他。飞行员 Scruggs 都是加州 Boulder Creek 消防区的消防员,飞行员 Mangiamarani 是加州林业和消防局的工程师。他们都是急救员、稳定人员和消防员。他在处理发生车祸。美国空军是一支包括国民警卫队和预备役部队在内的综合部队。这些辅助部队带来了独特的能力、技能和民事工作经验,以在国内外打造一支更强大的军事力量。这使得更强大的军事力量成为可能在冲突环境中。 “空军国民警卫队成员来自不同的背景,拥有不同的技能,”第 175 联队应急管理士官长德里克·怀特说。“空军的 ACE 计划涉及多个角色,即将开始实现。“这些飞行员毫不犹豫地使用他们的技能和行动来拯救生命,他们是冲动行事的。”
艾哈迈德讷格尔:Col Atul Apte,Shri RA Shaikh,车辆研究与发展机构(VRDE) 安贝尔纳特:Susan Titus 博士,海军材料研究实验室(NMRL) 昌迪普尔:PN Panda,综合试验场(ITR) Ratnakar S,Mohapatra,P 屋顶与实验机构(PXE) 班加罗尔:Satpal Singh Tomar,航空发展机构(ADE) Smt MR Bhuvaneswari,机载系统中心(CABS) Faheema AGJ,人工智能与机器人中心(CAIR) Tripty Rani Bose 女士,军用适航与认证中心(CEMILAC) Josephine Nirmala M 博士,战斗机系统发展与集成中心(CASDIC) Prasanna S Bakshi 博士,国防生物工程与电医学实验室(DEBEL) Venkatesh Prabhu,电子与雷达发展机构(LRDE)Ashok Bansiwal 博士,微波管研究与发展中心(MTRDC)昌迪加尔:Prince Sharma 博士,终端弹道研究实验室(TBRL)金奈:Smt S Jayasudha,战斗车辆研究与发展机构(CVRDE)德拉敦:Shri Abhai Mishra,国防电子应用实验室(DEAL)Shri JP Singh,仪器研究与发展机构(IRDE)德里:Shri Ashutosh Bhatnagar,人事人才管理中心(CEPTAM)Dipti Prasad 博士,国防生理学及相关科学研究所(DIPAS)Dolly Bansal 博士,国防心理研究所(DIPR)Shri Navin Soni,核医学及相关科学研究所(INMAS)Smt Rabita Devi,系统研究与分析研究所(ISSA)Noopur Shrotriya 女士,科学分析组(SAG) Rupesh Kumar Chaubey 博士,固体物理实验室 (SSPL) 瓜廖尔:AK Goel 博士,国防研发机构 (DRDE) 哈尔德瓦尼:Atul Grover 博士,国防生物能源研究所 (DIBER) 海得拉巴:Hemant Kumar 先生,先进系统实验室 (ASL) ARC Murthy 先生,国防电子研究实验室 (DLRL) Manoj Kumar Jain 博士,国防冶金研究实验室 (DMRL) Lalith Shankar 先生,伊玛拉特研究中心 (RCI) 贾格达尔普尔:Gaurav Agnihotri 博士,SF 综合设施 (SFC) 焦特布尔:Ravindra Kumar 先生,国防实验室 (DL) 坎普尔:AK Singh 先生,国防材料与仓储研究与开发机构 (DMSRDE) 科钦:Smt Letha MM,海军物理与海洋实验室 (NPOL)列城 : Dorjey Angchok 博士,国防高海拔研究所 (DIHAR) 马苏里 : Gopa B Choudhury 博士,技术管理学院 (ITM) 迈索尔 : M Palmurugan 博士,国防食品研究实验室 (DFRL) 浦那 : JA Kanetkar 博士 (Mrs),军备研究与发展机构 (ARDE) Vijay Pattar 博士,国防先进技术研究所 (DIAT) Shri S Nandagopal,高能材料研究实验室 (HEMRL) 特斯普尔 : Jayshree Das 博士,国防研究实验室 (DRL) 维沙卡帕特南:Smt Jyotsna Rani,海军科学与技术实验室 (NSTL)
2024年6月24日,来自Gib Hyderabad的棱柱形和圆柱细胞的技术许可:Amara Raja Advanced Cell Technologies Pvt。Ltd (ARACT), a wholly owned subsidiary of Amara Raja Energy & Mobility Ltd (ARE&M), one of India's leading battery manufacturers, has signed a technical licensing agreement with GIB EnergyX Slovakia s.r.o., a subsidiary of Gotion High-Tech Co Ltd. As part of the agreement GIB EnergyX will license Gotion's world class LFP technology for lithium-ion cells to Aract。这一综合协议使Amara Raja能够在圆柱和棱柱形构成中生产世界一流的LFP细胞。许可范围提供了对Cell Technology IP的访问权限,支持建立符合最新一代流程技术的Gigafactory设施,与Gotion的全球供应链网络集成,用于关键电池材料,以及用于解决方案部署的客户技术支持。技术转移和服务支持将完全补充Amara Raja为实施其Gigafactory制造能力以及其高级研究与创新中心“ EpoSistive Energy Labs”的努力,该公司旨在领导印度在该领域的研发能力。去年,阿玛拉·拉贾(Amara Raja)宣布了95亿卢比的投资支出,以建立Telangana州的Amara Raja Giga走廊。该公司的目标是通过在整个合作期内持续提高细胞性能和过程效率,以保持其产品竞争力和现代。Vikramadithya Gourineni,执行董事,他补充说:“我们很高兴宣布与Gotion和Inobat的伙伴关系。Amara Raja和Gotion既是斯洛伐克新兴的锂电池技术公司Inobat的股东兼董事会成员,可以解决电动航空等先进应用程序,并开发了强大的“摇篮”电池价值链的摇篮生态系统。Gotion High-Tech和Inobat之间的合资企业 GIB最近与斯洛伐克政府签署了一项投资协议,以开发该国的第一个LFP电池Gigafactory。 Gotion High-Tech设有8个全球研发中心,8,000个涵盖电池行业价值链的专利技术,全球20个主要的制造地点,预计到2025年的容量布局预计将达到300GWH。。 在过去的几年中,我们已经花费了大量时间和精力来了解全球新的能源景观,并通过我们对Inobat的投资来决定成为不断发展的锂电池生态系统的一部分。 通过其“全球C2C联盟”与GIB进行进一步的合作,使我们对加强我们的技术和供应安全性充满信心。 我们确定GIB最近与斯洛伐克政府签署了一项投资协议,以开发该国的第一个LFP电池Gigafactory。Gotion High-Tech设有8个全球研发中心,8,000个涵盖电池行业价值链的专利技术,全球20个主要的制造地点,预计到2025年的容量布局预计将达到300GWH。在过去的几年中,我们已经花费了大量时间和精力来了解全球新的能源景观,并通过我们对Inobat的投资来决定成为不断发展的锂电池生态系统的一部分。通过其“全球C2C联盟”与GIB进行进一步的合作,使我们对加强我们的技术和供应安全性充满信心。我们确定
塔玛拉甘兰科学与研究中心,印度尼西亚南苏拉威西市马卡萨尔1 *通讯作者:hardyanti.putrie@gmail.com摘要该系统评价旨在添加有关内质网(RE)和免疫生成细胞死亡(ICD)在开发抗癌治疗中的作用的信息。使用的方法是对各种数据库的文献综述,其选择基于包含和排除标准。基于文献搜索结果,据报道,对RE的压力反应是可能影响癌细胞生长的潜在靶标之一。 同时,蛋白质损伤相关的分子模式(湿)成为ICD指标,然后增加对癌细胞的免疫反应。 这为抗癌研究中的策略和治疗靶标提供了洞察力。 此外,本综述解释了应用基于压力的治疗RE的机会,包括RE反应的特定信号路径的作用和抗癌研究的发展。 从这篇综述中得出结论,强调了进一步研究的重要性,可以根据反应和ICD在开发抗癌疗法中对疗法进行优化,这在未来更有效,有效,并在免疫治疗方法中为创新开辟道路。 关键词:抗癌,免疫反应,内质网应力摘要该系统评价旨在提供有关内质网应激反应(ER)应激反应和免疫原性细胞死亡(ICD)在抗癌疗法发展中的作用的其他信息。 使用的方法是来自各种数据库的文献综述,其选择基于包含和排除标准。基于文献搜索结果,据报道,对RE的压力反应是可能影响癌细胞生长的潜在靶标之一。同时,蛋白质损伤相关的分子模式(湿)成为ICD指标,然后增加对癌细胞的免疫反应。这为抗癌研究中的策略和治疗靶标提供了洞察力。此外,本综述解释了应用基于压力的治疗RE的机会,包括RE反应的特定信号路径的作用和抗癌研究的发展。从这篇综述中得出结论,强调了进一步研究的重要性,可以根据反应和ICD在开发抗癌疗法中对疗法进行优化,这在未来更有效,有效,并在免疫治疗方法中为创新开辟道路。关键词:抗癌,免疫反应,内质网应力摘要该系统评价旨在提供有关内质网应激反应(ER)应激反应和免疫原性细胞死亡(ICD)在抗癌疗法发展中的作用的其他信息。使用的方法是来自各种数据库的文献综述,其选择基于包含和排除标准。基于文献搜索结果,据报道,ER应力反应是一个潜在的靶标,可以弥补癌细胞的生长。同时,与损伤相关的分子模式(DAMP)蛋白作为ICD的指标,随后增强了对癌细胞的免疫反应。这为癌症研究中的治疗策略和靶标提供了见解。此外,本综述讨论了基于ER压力的疗法的机会,包括特定的ER反应信号通路和癌症研究中进步的作用。本综述的结论强调了进一步研究的重要性,以优化基于压力和ICD的疗法,以开发更有效的抗癌治疗方法,同时还为免疫疗法方法的创新铺平了道路。关键词:抗癌,免疫反应,内质网应力pendahuluan
艾哈迈德讷格尔 : Shri RA Shaikh,车辆研究与发展机构 (VRDE) 昌迪普尔 : Shri PN Panda,综合试验场 (ITR) Shri Ratnakar S,Mohapatra,P 屋顶与实验机构 (PXE) 班加罗尔 : Shri Satpal Singh Tomar,航空发展机构 (ADE) Smt MR Bhuvaneswari,机载系统中心 (CABS) Smt Faheema AGJ,人工智能与机器人中心 (CAIR) Dr Josephine Nirmala M,战斗机系统发展与集成中心 (CASDIC) Dr Sanchita Sil 和 Dr Sudhir S Kamble,国防生物工程与电医学实验室 (DEBEL) Dr V Senthil,燃气轮机研究机构 (GTRE) Shri Venkatesh Prabhu,电子与雷达发展机构 (LRDE) Dr Ashok Bansiwal,微波管研究与发展中心 (MTRDC)昌迪加尔:Pal Dinesh Kumar 博士,终端弹道研究实验室 (TBRL):Anuja Kumari 博士,国防地理信息学研究机构 (DGRE) 金奈:K Anbazhagan 先生,战斗车辆研究与发展机构 (CVRDE) 德拉敦:Abhai Mishra 先生,国防电子应用实验室 (DEAL) JP Singh 先生,仪器研究与发展机构 (IRDE) 德里:Tapesh Sinha 先生,国防科学信息与文献中心 (DESIDOC) Dipti Prasad 博士,国防生理学与相关科学研究所 (DIPAS) Santosh Kumar Choudhury 先生,国防心理研究所 (DIPR) Navin Soni 先生,核医学与相关科学研究所 (INMAS) Rabita Devi 先生,系统研究与分析研究所 (ISSA) Ashok Kumar 先生,科学分析集团(SAG)Rupesh Kumar Choubey 博士,固体物理实验室(SSPL)瓜廖尔:AK Goel 博士,国防研发机构(DRDE)哈尔德瓦尼:Atul Grover 博士,国防生物能源研究所(DIBER)海得拉巴:Hemant Kumar 博士,先进系统实验室(ASL)ARC Murthy 博士,国防电子研究实验室(DLRL)Manoj Kumar Jain 博士,国防冶金研究实验室(DMRL)Lalith Shankar 博士,伊玛拉特研究中心(RCI)贾格达尔普尔:Gaurav Agnihotri 博士,SF 综合设施(SFC)焦特布尔:DK Tripathi 博士,国防实验室(DL)坎普尔:Mohit Katiyar 博士,国防材料与仓储研究与发展机构(DMSRDE)科钦:Smt Letha MM,海军物理与海洋实验室(NPOL)列城 : Dorjey Angchok 博士,国防高海拔研究所 (DIHAR) 马苏里 : Gp Capt RK Mansharamani,技术管理学院 (ITM) 迈索尔 : M Palmurugan 博士,国防食品研究实验室 (DFRL) 浦那 : Shri Ajay K Pandey,军备研究与发展机构 (ARDE) Vijay Pattar 博士,国防先进技术研究所 (DIAT) Ganesh Shankar Dombe 博士,高能材料研究实验室 (HEMRL) 特斯普尔 : KS Nakhuru 博士,国防研究实验室 (DRL) 维沙卡帕特南:Smt Jyotsna Rani,海军科学与技术实验室 (NSTL)
摘要 凿井是地下矿山的一项经典活动。在横截面积较小的竖井或机械化指数较低的矿井中,通常使用手动风钻和炸药筒爆破,采用自然通风或带有轴流风扇的柔性管道排出气体和烟雾,用手铲将矿渣铲入可提升的倾卸斗中。这里研究了这种类型的系统,包括一个矩形横截面竖井(3.7 mx 2.0 m),最终深度为 94 m,开挖目的是在露天矿工业启动前获取中试规模矿物加工试验的样品。竖井有一个混凝土套管,其墙壁由间距 1.5 m 的木板和 25 mm 厚的木板作为衬砌支撑。该竖井是在位于 Chapada(巴西 Mara Rosa 市)的变质热液铜金矿床的片岩中开挖的。对涵盖一个月活动的每日生产工作表进行了统计分析,涵盖了整个采矿作业周期,即钻孔、装药和爆破、烟尘排放、出渣、修整和刮平壁面和工作面以及安装支撑系统。还量化了作业停机时间。生产力指标的统计分析可以检测作业的关键点并为类似的采矿作业建立参考。关键词:矿山工作;地下矿;小型矿;统计分布。摘要 矿山基础是地下矿山的经典活动。 Em poços de pequena seção transversal ou em minas com baixos índices de mecanização é comum or uso de perfuratrizes pneumáticas manuais e desmonte por gelatin explosiva em cartuchos, empregando tiragem natural ou dutos flexíveis com ventiladores axiais para exaustão degas e fumos,删除古手册中的材料并通过 caçambas basculantes içáveis 进行运输。系统设计为矩形截面 (3,7 mx 2,0 m),最终高度为 94 m,可通过逐步升级的矿物开采方法,在工业领域开展邮政业务。在这个时代,我们以 25 毫米的 25 毫米马德拉四边形为基础,以 25 毫米的速度进行了马德拉四边形的支撑。可以在 Chapada(巴西玛拉罗莎市)的水温变质过程中快速解决问题。论坛分析统计为坎帕尼亚的生产日记、更改所有操作的待办事项、名称:性能、保养和装饰、排气、材料装饰、装饰和面孔esscoramento 系统蒙太奇。作为paradas de operação Também foram quantificadas。生产率指标的统计分析可以发现作业中的关键点,并为类似的采矿作业建立参考。关键词:矿山工作;地下矿井;小型地雷;统计分布。摘要 凿井是地下矿山的一项经典活动。在小井或机械化程度较低的矿井中,通常使用手动风钻并使用药筒中的炸药明胶进行爆破,使用自然通风或带有轴流风扇的柔性管道进行气体和烟雾抽排,用手动铲子清除碎片材料并提升翻斗。这里进行了一项研究
艾哈迈德讷格尔 : Shri RA Shaikh,车辆研究与发展机构 (VRDE) 安贝尔纳特 : Susan Titus 博士,海军材料研究实验室 (NMRL) 昌迪普尔 : Shri PN Panda,综合试验场 (ITR) Shri Ratnakar S,Mohapatra,P 屋顶与实验机构 (PXE) 班加罗尔 : Shri Satpal Singh Tomar,航空发展机构 (ADE) Smt MR Bhuvaneswari,机载系统中心 (CABS) Smt Faheema AGJ,人工智能与机器人中心 (CAIR) Josephine Nirmala M 博士,战斗机系统发展与集成中心 (CASDIC) Prasanna S Bakshi 博士,国防生物工程与电医学实验室 (DEBEL) Shri Venkatesh Prabhu,电子与雷达发展机构 (LRDE) Ashok Bansiwal 博士,微波管研究与发展中心 (MTRDC)昌迪加尔: Prince Sharma 博士,终端弹道研究实验室 (TBRL) 金奈: S Jayasudha 先生,战斗车辆研究与发展机构 (CVRDE) 德拉敦: Abhai Mishra 先生,国防电子应用实验室 (DEAL) JP Singh 先生,仪器研究与发展机构 (IRDE) 德里: Ashutosh Bhatnagar 先生,人事人才管理中心 (CEPTAM) Tapesh Sinha 先生,国防科学信息与文献中心 (DESIDOC) Rashmi Rai Chauhan 女士,规划与协调局 (DP&C) Dipti Prasad 博士,国防生理与相关科学研究所 (DIPAS) Dolly Bansal 博士,国防心理研究所 (DIPR) Navin Soni 先生,核医学与相关科学研究所 (INMAS) Rabita Devi 先生,系统研究与分析(ISSA)Noopur Shrotriya 女士,科学分析组(SAG)Rupesh Kumar Chaubey 博士,固体物理实验室(SSPL)瓜廖尔:AK Goel 博士,国防研发机构(DRDE)哈尔德瓦尼:Atul Grover 博士,国防生物能源研究所(DIBER)海得拉巴:Hemant Kumar,先进系统实验室(ASL)ARC Murthy 先生,国防电子研究实验室(DLRL)Manoj Kumar Jain 博士,国防冶金研究实验室(DMRL)Lalith Shankar 先生,伊玛拉特研究中心(RCI)贾格达尔普尔:Gaurav Agnihotri 博士,SF 综合体(SFC)焦特布尔:Ravindra Kumar 先生,国防实验室(DL)坎普尔:AK Singh 先生,国防材料与仓储研究与发展机构(DMSRDE)科钦: Smt Letha MM,海军物理与海洋实验室 (NPOL) 列城 : Dr Dorjey Angchok,国防高海拔研究所 (DIHAR) 马苏里 : Gp Capt RK Mansharamani,技术管理学院 (ITM) 迈索尔 : Dr M Palmurugan,国防食品研究实验室 (DFRL) 浦那 : Shri Ajay K Pandey,军备研究与发展研究所 (ARDE) Dr Vijay Pattar,国防先进技术研究所 (DIAT) Shri S Nandagopal,高能材料研究实验室 (HEMRL) 特兹普尔:Jayshree Das 博士,国防研究实验室 (DRL) 维沙卡帕特南:Smt Jyotsna Rani,海军科学与技术实验室 (NSTL)
安贝尔纳特:Susan Titus 博士,海军材料研究实验室(NMRL);昌迪普尔:PN Panda 先生,综合试验场(ITR);班加罗尔:Subbukutti S 先生,航空发展研究所(ADE);MR Bhuvaneswari 先生,机载系统中心(CABS);Faheema AGJ 先生,人工智能与机器人中心(CAIR);Tripty Rani Bose 女士,军事适航与认证中心(CEMILAC);Josephine Nirmala M 先生,国防航空电子研究研究所(DARE);Anuya Venkatesh 先生,国防生物工程与电医学实验室(DEBEL);Venkatesh Prabhu 先生,电子与雷达发展研究所(LRDE);Vishal Kesari 博士,微波管研究与发展中心(MTRDC);昌迪加尔:HS Gusain 博士,雪与雪崩研究研究所(SASE); Prince Sharma 博士,终端弹道研究实验室 (TBRL);钦奈:Smt S Jayasudha,战斗车辆研究与发展机构 (CVRDE);德拉敦:Shri Abhai Mishra,国防电子应用实验室 (DEAL);Shri JP Singh,仪器研究与发展机构 (IRDE);德里:Shri Ashutosh Bhatnagar,人事人才管理中心 (CEPTAM);Dipti Prasad 博士,国防生理与相关科学研究所 (DIPAS);Nidhi Maheshwari 博士,国防心理研究所 (DIPR);Navin Soni,核医学与相关科学研究所 (INMAS);Anurag Pathak,系统研究与分析研究所 (ISSA);Indu Gupta 博士,激光科学与技术中心 (LASTEC);Noopur Shrotriya 女士,科学分析组 (SAG); Rupesh Kumar Chaubey 博士,固体物理实验室 (SSPL);瓜廖尔:RK Srivastava 先生,国防研发机构 (DRDE);哈尔德瓦尼:Atul Grover 博士,国防生物能源研究所 (DIBER);海得拉巴:Hemant Kumar 先生,先进系统实验室 (ASL);Pramod K Jha 先生,先进系统中心 (CAS);JK Rai 博士,先进数值研究与分析组 (ANURAG);Bidisha Lahiri 女士,高能系统与科学中心 (CHESS);ARC Murthy 先生,国防电子研究实验室 (DLRL);Manoj Kumar Jain 博士,国防冶金研究实验室 (DMRL);K Nageswara Rao 博士,国防研究与发展实验室 (DRDL);Lalith Shankar 先生,伊玛拉特研究中心 (RCI);贾格达尔布尔:Gaurav Agnihotri 博士,SF 综合体 (SFC);焦特布尔:Shri Ravindra Kumar,国防实验室 (DL);坎普尔:Shri AK Singh,国防材料与仓储研究与发展机构 (DMSRDE);科钦:Smt Letha MM,海军物理与海洋实验室 (NPOL);列城:Dorjey Angchok 博士,国防高海拔研究所 (DIHAR);穆索里:Gopa B Choudhury 博士,技术管理学院 (ITM);迈索尔:M Palmurugan 博士,国防食品研究实验室 (DFRL);浦那:JA Kanetkar 博士 (Mrs),军备研究与发展机构 (ARDE);Vijay Pattar 博士,国防先进技术研究所 (DIAT);Shri AM Devale,高能材料研究实验室 (HEMRL);Shri SS Arole,研究与开发机构 (Engrs) [R&DE (E)];特兹普尔:Dr Jayshree Das,国防研究实验室 (DRL)
布兰登(NOAA)评论说,逐渐的温暖以及为什么帕劳的经验与正常的el Nino事件无关,这是由于上一次讨论中提到的三重La Nina Dipole效应所致。Zulfi(SPC) - 询问是否有任何模型比斐济正常情况更干燥,并且模型是否拾取了Phil地区降雨分布的任何差异,而Ben回答说这些模型却没有充分利用某些事件,但没有完全。这表明了当地事件(例如海洋热浪)如何压倒更广泛的气候事件。这显示了查看信息和以下模型在内的重要性,包括季节内监测和验证。一个问题被问到为什么添加了额外的风速图。Ben回答说,这是一张量身定制的地图,旨在将Phil添加到有关风模式的报告中,并且并不是该报告的一部分或来自国家的报告。 但是,有兴趣看看这些国家是否经历过或拾取风速异常。 Ben补充说,最后一个事件风流在整个南太平洋地区显示出更强的风。 这是由上次PICOF语句所预测的,由此组成,如果使用的话可以增加风速和强度的验证。 luteru-承认演讲。 是否要澄清这个El Nino是否比以前的空气更高。 (指的是最后一个子弹点-Phils PPTX)Phil-自从观察开始以来,Tripple Dip El Nino发生了3次,我们将考虑审查Ben在先前讨论中提到的过去事件。 niwa:承认这个问题。Ben回答说,这是一张量身定制的地图,旨在将Phil添加到有关风模式的报告中,并且并不是该报告的一部分或来自国家的报告。但是,有兴趣看看这些国家是否经历过或拾取风速异常。Ben补充说,最后一个事件风流在整个南太平洋地区显示出更强的风。 这是由上次PICOF语句所预测的,由此组成,如果使用的话可以增加风速和强度的验证。 luteru-承认演讲。 是否要澄清这个El Nino是否比以前的空气更高。 (指的是最后一个子弹点-Phils PPTX)Phil-自从观察开始以来,Tripple Dip El Nino发生了3次,我们将考虑审查Ben在先前讨论中提到的过去事件。 niwa:承认这个问题。Ben补充说,最后一个事件风流在整个南太平洋地区显示出更强的风。这是由上次PICOF语句所预测的,由此组成,如果使用的话可以增加风速和强度的验证。luteru-承认演讲。是否要澄清这个El Nino是否比以前的空气更高。(指的是最后一个子弹点-Phils PPTX)Phil-自从观察开始以来,Tripple Dip El Nino发生了3次,我们将考虑审查Ben在先前讨论中提到的过去事件。niwa:承认这个问题。Simon-在Scopic中,有一个干旱监测工具可以确定过去可能有助于Luteru的问题的事件。特里 - 我们需要回顾前几个月,并深入考虑过去事件的审查。我们需要考虑与国家合作,以确定可能影响该地区整体气候系统的本地气候条件。(terry验证这一点)SPC:SPCZ位于其气候位置和El Nino期间平均位置的南部。您可以在这个季节对两种贸易风发表评论吗?怀疑它可能与非常温暖的海洋有关,就像约翰·玛拉(John Marra)在西太平洋地区所呈现的那样,使事情变得更加像La Nina一样。