摘要 帽结合蛋白 eIF4E 通过与 eIF4G 相互作用构成 eIF4F 复合物的核心,该复合物在 mRNA 的环化及其随后的帽依赖性翻译中起关键作用。除了在 mRNA 翻译起始中的基本作用外,还描述或提出了 eIF4E 的其他功能,包括充当前病毒因子和参与性发育。我们使用 CRISPR/Cas9 基因组编辑生成了甜瓜 eif4e 敲除突变株系。编辑在甜瓜中有效,因为我们在 T0 代就获得了第一个 eIF4E 外显子中单核苷酸纯合缺失的转化植物。分离 F2 代的编辑和非转基因植物接种了摩洛哥西瓜花叶病毒 (MWMV);纯合突变植物表现出病毒抗性,而杂合和非突变植物被感染,这与我们之前对 eIF4E 沉默植物的结果一致。有趣的是,T0 和 F2 代的所有纯合编辑植物都表现出雄性不育表型,而与野生型植物杂交则恢复了育性,表明雄性不育表型的分离与 eif4e 突变的分离之间存在完美的相关性。对甜瓜雄花沿连续发育阶段的形态学比较分析表明,小孢子母细胞和绒毡层在减数分裂后发育异常,突变体和野生型的绒毡层降解时间明显不同。RNA-Seq 分析确定了花粉发育中的关键基因,这些基因在 eif4e/eif4e 植物的花中下调,并表明 eIF4E 特异性 mRNA 翻译起始是甜瓜雄配子形成的限制因素。
自 20 世纪 80 年代初发现人类免疫缺陷病毒 1 型 (HIV-1) 以来,该感染已导致 3900 万人死亡。科学家一直未能找到 HIV-1 的治愈策略,但基因编辑技术(如成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9))为开发 HIV 感染的治疗方法提供了一种新方法。虽然 CRISPR/Cas9 系统已成功用于多种不同类型的研究,但人们仍然担心脱靶效应。本综述详细介绍了 Cas9 系统的不同方面以及它们在脱靶事件中的作用。此外,本综述还介绍了目前可用于检测脱靶切割事件的技术及其优缺点。虽然一些研究已经利用了全基因组测序 (WGS),但这种方法牺牲了对整个基因组的覆盖深度。现在已经开发出多种不同的方法来利用下一代测序 (NGS),而不会牺牲覆盖深度。本综述重点介绍了四种广泛使用的检测脱靶事件的方法:(1) 通过测序实现的全基因组无偏双链断裂事件识别 (GUIDE-Seq),(2) 发现原位 Cas 脱靶并通过测序进行验证 (DISCOVER-Seq),(3) 通过测序进行环化以在体外报告切割效果 (CIRCLE-Seq),以及 (4) 原位断裂标记和测序 (BLISS)。这些技术各有优缺点,但都围绕捕获 Cas9 内切酶催化的双链断裂 (DSB) 事件。能够定义脱靶事件对于 HIV-1 的基因治疗治愈策略至关重要。
癌症免疫疗法已成为癌症治疗的一种有希望的方法,被认为是手术干预,放疗,化学疗法和靶向治疗后的主要进步。免疫治疗药物的临床使用,尤其是靶向免疫检查点的抗体药物,显着增加了1。与仅针对肿瘤细胞的传统抗肿瘤药物不同,这些药物具有独特的作用机理,因为它们抑制了多种细胞类型的蛋白质 - 蛋白质相互作用,例如PD-1/ PD-L1阻断可能会在T细胞,肿瘤细胞,巨噬细胞,巨噬细胞和树突状细胞之间发挥作用(图1)。然而,在存在免疫介导的不良反应的情况下,及时戒断抗体疗法会带来很大的挑战,因为它们的分子量很高和长期寿命。大多数小分子化学药物的细胞摄取通常是可行的,但可能伴有脱靶效应。肽疗法占据了治疗剂光谱中单克隆抗体疗法和小分子化学药物之间的中间位置。肽具有明显的优势,包括明显的选择性,尤其是针对细胞表面的药物靶标,稳健浸润到实体瘤中,并易于合成;因此,它们是免疫检查点抑制的关键竞争者。然而,肽治疗剂的临床效用是由2个主要障碍物所影响的:生理环境内的酶促降解和次优的口服生物利用度。已经实施了各种方法,以避免递归降解,包括使用非天然氨基酸,环化修饰和镜像噬菌体
聚(芳基醚),形成了大量的大环寡聚物。[8,9]在反应的初始阶段,双足与碳酸钠或碳酸钾(或氢氧化钾)反应,从而产生了许多盐沉淀,从而阻碍了反应混合物的搅拌。由于盐的溶解度差而产生的高稀释条件,在反应混合物中形成了环状化合物。这意味着反应中的速率控制步骤是盐的溶解。Miyatake和Hlil发现,可以使用高速均质器可以改善这种反应系统中的环化问题。高强度混合增加了盐的表面积,因此有助于其溶解。[9]在几分钟内获得具有低分子量分布的非常高的分子量多形成量。与合成的线性聚(芳基醚)的典型反应相反,该特定梯子聚合物的形成更为复杂。在方案1中可以看出,两个单体都有四个反应性组。因此,四苯酚盐的溶解度甚至低于双苯酚和循环的溶解度,更容易形成。另外,一个单体中多个反应组的存在增加了交联的可能性。也观察到,如果它们的分子量高于10 000 da,则聚合物或循环将从反应混合物(如果将DMAC或DMF用作溶剂)中沉淀出来。我们发现在这一点上,对于较低的单体和低聚物浓度,常见的级增长聚合反应进一步进行并不容易,因为循环形成更容易形成。此外,交联发生迅速发生,因为OH和F组从沉淀的聚合物表面随机伸展,其链条折叠,线圈和包装在一起,并与其他OH和F组随机反应。
拟议中未根据《国家环境政策法》(NEPA)的规定(42美国法典(U.S.C.)§§4321-4347);环境质量委员会(CEQ)NEPA法规(40条联邦法规[CFR]第1500-1508部分);空军(DAF)环境影响分析过程(EIAP)(32 CFR第989部分)和联邦航空管理局(FAA)命令(FAA)命令1050.1F,环境影响:政策和程序,DAF准备了附加的环境评估(EA),以评估拟议中的潜在环境后果,从而从拟议中的行动中进行了较低的行动,以建立一个新的Persorent Senonement Saniore san New-Al-al-al-al-al-al-al-alt al-al-al-al-al-al-al-al-al-al-alt al-alt al-al-al-al-al-al-al-al-al-alt al-al-al-al-al-altertimile(Moiore)(Moiore)(Moiore)。拟议的行动将支持在圣安东尼奥 - 兰多夫空军基地联合基地(JBSA-Randolph),德克萨斯州以及其他暂时性DAF用户的第12飞行训练部(12 ftw)的未来未来试点培训要求。根据国防部与FAA之间的理解备忘录,FAA正在作为合作机构作为合作机构,以根据FAA订单JO 7400.2p的特殊用途空域(SUA)诉讼的环境审查,处理空间问题。作为此过程的一部分,FAA将与航空用户公开通行拟议的领空,以征求信息,以帮助确定它对可通道的空域产生什么影响。除了与此EA相关的公众参与外,还将发生循环化。在FAA循环过程中收到的评论将在最终的EA中考虑,如适用。DAF将要求FAA发行自己的fonsi,并在DAF发出fonsi后尽快将RAN2A低MOA领空图表。附着的EA是通过参考将其纳入的,该发现没有显着影响(FONSI)。
执行摘要 7 1 简介 9 1.1 研究目的和目标 9 1.2 报告结构 9 1.3 基础行业材料简介 9 2 政策背景 11 3 材料分析 13 3.1 方法论 13 3.1.1 文献收集和审查 13 3.1.2 基础材料入围名单 13 4 材料需求趋势 18 4.1 推动材料创新的法规 19 5 精选基础材料深入分析 21 5.1 铸铁和钢铁 21 5.1.1 材料生产方法和产量 21 5.1.2 材料生产和消费的新兴创新24 5.1.3 当前和未来的用途 26 5.1.4 钢铁的可持续性表现 28 5.2 铝 30 5.2.1 材料的生产方法和产量 30 5.2.2 材料生产和消费领域的新兴创新 31 5.2.3 当前和未来的用途 33 5.2.4 铝的可持续性特征 34 5.3 塑料、聚合物和复合材料 35 5.3.1 塑料和聚合物的定义 35 5.3.2 材料的生产方法和产量 35 5.3.3 材料生产和消费领域的新兴创新 36 5.3.4 当前和未来的用途 38 5.3.5 塑料、聚合物和复合材料的可持续性表现 40 5.4 铜 42 5.4.1 材料的生产方法和产量 42 5.4.2 材料生产和消费领域的新兴创新 42 5.4.3 当前和未来的用途 43 5.4.4 铜的可持续性表现 45 5.5 玻璃 45 5.5.1 材料生产方法和产量 45 5.5.2 材料生产和消费领域的新兴创新 46 5.5.3 当前和未来的用途 47 5.5.4 玻璃的可持续性表现 48 6 关键的交叉趋势 50 6.1 汽车轻量化 50 6.2 供应链循环化 52 6.3 在供应链中使用可再生电力 53 7 讨论 54 8 下一步 1 参考文献 2
DNA循环是对双学领域中浓厚兴趣的话题,因为这对于基因调节非常重要[1-3],以及DNA的重组,包装和更多[4]。蛋白质介导的DNA环主要是由约80 fn的力驱动的[5]。然而,在生物逻辑细胞的高度动态和非平衡环境中,DNA不断地从其细胞内环境中受到piconewton尺度的力,这可以超过典型的热量波动的大量级别的尺度级[5-7]。使用光学捕获来测量张力对循环时间的这种影响,很明显,小于piconewton的力可以增加循环时间的数量级[8](见图1用于插图)。过去已经通过分析半辅助聚合物的环化过程对循环时间对DNA中的张力的这种依赖性进行了研究。Blumberg等。[9]开始了这种探索,研究了蛋白质介导的DNA循环作为两态系统,在详细平衡的含义下。后来,Shin等。[10]投资了与障碍逃生问题相同的主题。在低力状态(f <80 fn)中,在生物学环境中特别相关,这些理论在预测循环形成时间的力依赖性的预测中不同意。第一个理论表明,循环时间在f 2中呈指数增长,而第二个理论表明f的指数增加了。到今天为止,尚不清楚哪个是正确的。此外,在这种低力制度中,没有实验数据可以将这些理论付诸实践。在较高的力量下,可以表明Shin等人的障碍逃逸方法。[10]与Chen等人的可用实验数据非常吻合。[8],而Blumberg等人的两态模型。[10]不是。在这封信中,我们证明了在实验和障碍理论之间进行的良好一致性,应提出对较小的力量分解的,然后在考虑更长的DNA链时,该理论中的假设变得不准确。然后我们提出一个小说
补体系统在类风湿关节炎(RA)(1)中起有害作用。潜在的机制之一是免疫球蛋白的丰富免疫复合物及其同源自身抗原激活了滑膜中的经典补体途径(2,3)。翻译后修饰的蛋白质和肽形成了RA中诱导疾病的自身抗原的特定类别。抗硝化蛋白抗体(ACPA)存在于大约75%的RA患者中,并且是RA诊断的最佳标记之一(4)。ACPA可以是本质上的IgG,IgA或IgM,可以在滑膜流体和血清中检测到,其水平与疾病的严重程度增加相关(5,6)。有趣的是,ACPA存在于症状发作前5年的患者血清中,因此可以充当RA的预测因子(7)。目前,通过使用环化柠檬酸肽的混合物作为真实抗原的合成模拟物,例如纤维纤维, - 亚烯酚酶,含素酶,维毛素,纤维蛋白,脂肪蛋白,和历史酮(8)的混合物,通过环状柠檬酸肽(CCP)进行了ACPA的存在,该测定法测量了RA患者的ACPA。肽基 - 阿尔格脱氨酶(PAD)酶通过用酮(9-11)代替原代氯胺酮(= nh),从而导致ARG转化为citrulline。这会导致分子电荷的净变化,从生理pH的阳性到中性,这会增加其疏水性,从而影响蛋白质折叠,相互作用和功能。RA患者的PAD2和PAD4的表达和活性增加(12,13)。RA患者的PAD2和PAD4的表达和活性增加(12,13)。人类嗜中性粒细胞是已知的过表达酶(12),该酶取决于还原环境(14)和相对较高的钙浓度(15)。除了典型的局部滑膜蛋白外,补体系统的许多蛋白质和抑制剂都容易受到转化后修饰的影响(7,16)。c1-inh是一种主要由肝细胞产生的急性期蛋白
抑制人尿激酶型纤溶酶原活化剂(HUPA)是一种在细胞细胞蛋白水解中起重要作用的丝氨酸蛋白酶,是降低肿瘤细胞浸润性和转移活性的有前途策略。然而,由于HUPA与其他旁拉丝氨酸蛋白酶的高结构相似性,选择性小分子HUPA抑制剂的产生已被证明是具有挑战性的。产生更具体疗法的努力导致了基于环状肽的抑制剂的发展,对HUPA的选择性更高。虽然需要后一种特性,但在临床前小鼠模型中,直系同源物鼠的保留却带来了抑制剂测试的困难。在这项工作中,我们采用了一种基于达尔文进化的方法来识别HUPA的噬菌体编码的双环肽抑制剂,对Murine UPA(MUPA)具有更好的交叉反应性。最佳选择的双环肽(UK132)分别抑制了HUPA和MUPA,K I值分别为0.33和12.58 µm。抑制作用似乎对UPA是特定的,因为UK132仅弱抑制了一组结构相似的丝氨酸蛋白酶。去除或取代第二个环,一个未在体外进化的循环导致效力低于UK132的单核细胞和双环肽类似物。交换1,3,5- Tris-(溴甲基) - 苯苯,其与噬菌体选择中未使用不同的小分子的苯二苯,导致效力降低了80倍,揭示了分支环化连接器的重要结构作用。UK132中精氨酸的进一步亚属菌对赖氨酸的进一步构成,导致了对HUPA(K I = 0.20 µM)和鼠直系同源物(K I = 2.79 µm)的抑制效力增强的双环肽UK140。通过结合良好的特异性,纳摩尔亲和力和低分子质量,在这项工作中开发的双环肽抑制剂可能会为发展有效和选择性的抗反转移疗法的发展提供新颖的人类和鼠交叉反应性铅。
对映选择性金 (I) 催化的挑战显然与活性配合物的线性几何形状有关,并且在许多情况下与对映决定步骤的外层机制有关。尽管如此,近年来可以通过空间拥挤的配体(其形成嵌入远端活性位点的深手性口袋)、双功能膦或可能通过亲金相互作用形成的双核配合物实现高对映选择性。1 另外,Toste 2 引入了手性反离子策略,其中值得注意的是 BINOL 衍生的磷酸盐在涉及阳离子金中间体的反应中充当手性诱导剂。尽管对于磷酸盐阴离子的确切机制和作用存在一些不确定性,但该策略已显示出突出的潜力,并引发了金 3,4 和其他过渡金属催化的重大进展。 5,6 在金 (I) 催化中,首次公开的分子内氢烷氧基化、氢羧化和氢胺化反应迄今为止仍然是反离子策略的主要应用领域,尽管该方法在理论上应该适用于更广泛的反应。值得注意的是,所有涉及对映体决定步骤中紧密离子对的反应都可能适用,包括那些通过碳阳离子中间体与远程中性金 (I) 单元进行的反应。这种情况可以用图 1.1 中的串联杂环化-亲核加成反应来适当地代表。7 在这种情况下以及其他情况下,手性反离子的立体化学控制受到磷酸盐-碳阳离子对的空间排列不明确和灵活的影响。我们认为可以通过以某种方式将磷酸盐反离子束缚在阳离子金复合物上来克服这个缺点(图 1.2b)。将磷酸单元连接到金配体的共价系链可能为关键中间体提供足够的几何约束和分子组织,从而实现有效的立体化学控制。如果正确实施,这种方法可能会突破对映选择性金催化以及更广泛地说对映选择性过渡金属催化中“离子配对策略”的极限。之前已经报道过在分子内嵌入阴离子的过渡金属配合物。然而在这些