本文概述了规划作为一种认知功能的工程和神经科学模型。目的是呈现工程和神经科学中现有的规划模型,作为实现类脑人工智能规划功能的参考。根据调查结果,我们还将从挑战和架构的角度提出类脑人工智能下一步的研究和开发应该做的事情。 预计将来会根据本文提出具体的研究要求。 规划是通用智能的一项重要认知功能,因为它允许系统在未知情况下无需新学习即可(现场)解决问题。在一般智力的讨论中,计划被认为是流体智力的典型功能。 自人工智能诞生以来,工程界一直在研究规划,符号化问题也有解决方案。然而,目前解决非公式化现实问题仍然很困难。除了人类之外,苏格兰乌鸦等动物也以能够解决复杂的规划问题而闻名,其他动物也必须进行某种形式的规划才能在野外生存。在哺乳动物的大脑中,前额叶皮层已知参与计划。 下面,我们首先概述规划,介绍工程模型,然后展示神经科学模型调查的结果。最后,我们考虑创建规划大脑模型的策略。具体来说,问题和评估基准
为布局未来的竞争优势, 纺织标竿企业纷纷成立AI 小组,开发多项AI 管理技 术,如个人助理、企业平台、智能客服等,一方面提升营运效能,二来也发挥跨 国协同合作的综效,更可因应产业缺工、缺才的长期趋势,减少人力负荷、改善 生产效率与品质、研发及设计新产品或协助客户控管库存、创造服务价值最大化 等,取得品牌客户认同,获得了更多订单。
预防和治疗糖尿病肾脏疾病:评论。 Am J肾脏DIS 2018; 72:267-277。 5。 Barnett AH,Mithal A,Manassie J等。 :在2型糖尿病和慢性肾脏疾病的患者中,empagliflozin添加到现有抗糖尿病治疗中的功效和安全性:一项随机,双盲,安慰剂对照试验。 柳叶刀糖尿病Endocrinol 2014; 2:369-384。 6。 Heerspink HJL,Kosiborod M,Inzucchi SE等。 :钠葡萄糖共转运蛋白-2抑制剂的肾脏保护作用。 肾脏INT 2018; 94:26-39。 7。 McGuire DK,Shih WJ,Cosentino F等。 :2型糖尿病患者的SGLT2抑制剂与心血管和肾脏结局的关联:荟萃分析。 JAMA Cardiol 2021; 6:148-158。 8。DeBoer IH,Khunti K,Sadusky T等。 :慢性肾脏疾病中的糖尿病管理:美国糖尿病协会(ADA)和肾脏疾病的共识报告:改善全球结果(KDIGO)。 糖尿病护理2022; 45:3075-3090。 9。 Vaduganathan M,Docherty KF,Claggett BL等。 :SGLT-2 INE心力衰竭:对五个随机对照试验的全面元分析。 柳叶刀2022; 400:757-767。 10。 Heerspink HJL,StefánssonBV,Corea-Rotter R等。 :慢性肾脏疾病患者的Dapagliflozin。 n Engl J Med 2020; 383:1436-1446。 11。 empa-kidney合作小组; Herrington WG,Staplin N,Wanner C等。 n Engl J Med 2023; 388:117-127。 12。预防和治疗糖尿病肾脏疾病:评论。Am J肾脏DIS 2018; 72:267-277。5。Barnett AH,Mithal A,Manassie J等。:在2型糖尿病和慢性肾脏疾病的患者中,empagliflozin添加到现有抗糖尿病治疗中的功效和安全性:一项随机,双盲,安慰剂对照试验。柳叶刀糖尿病Endocrinol 2014; 2:369-384。6。Heerspink HJL,Kosiborod M,Inzucchi SE等。:钠葡萄糖共转运蛋白-2抑制剂的肾脏保护作用。肾脏INT 2018; 94:26-39。 7。 McGuire DK,Shih WJ,Cosentino F等。 :2型糖尿病患者的SGLT2抑制剂与心血管和肾脏结局的关联:荟萃分析。 JAMA Cardiol 2021; 6:148-158。 8。DeBoer IH,Khunti K,Sadusky T等。 :慢性肾脏疾病中的糖尿病管理:美国糖尿病协会(ADA)和肾脏疾病的共识报告:改善全球结果(KDIGO)。 糖尿病护理2022; 45:3075-3090。 9。 Vaduganathan M,Docherty KF,Claggett BL等。 :SGLT-2 INE心力衰竭:对五个随机对照试验的全面元分析。 柳叶刀2022; 400:757-767。 10。 Heerspink HJL,StefánssonBV,Corea-Rotter R等。 :慢性肾脏疾病患者的Dapagliflozin。 n Engl J Med 2020; 383:1436-1446。 11。 empa-kidney合作小组; Herrington WG,Staplin N,Wanner C等。 n Engl J Med 2023; 388:117-127。 12。肾脏INT 2018; 94:26-39。7。McGuire DK,Shih WJ,Cosentino F等。:2型糖尿病患者的SGLT2抑制剂与心血管和肾脏结局的关联:荟萃分析。JAMA Cardiol 2021; 6:148-158。8。DeBoer IH,Khunti K,Sadusky T等。:慢性肾脏疾病中的糖尿病管理:美国糖尿病协会(ADA)和肾脏疾病的共识报告:改善全球结果(KDIGO)。糖尿病护理2022; 45:3075-3090。9。Vaduganathan M,Docherty KF,Claggett BL等。:SGLT-2 INE心力衰竭:对五个随机对照试验的全面元分析。柳叶刀2022; 400:757-767。10。Heerspink HJL,StefánssonBV,Corea-Rotter R等。:慢性肾脏疾病患者的Dapagliflozin。n Engl J Med 2020; 383:1436-1446。11。empa-kidney合作小组; Herrington WG,Staplin N,Wanner C等。n Engl J Med 2023; 388:117-127。12。:慢性肾脏疾病患者的雌性杂志。Perkovic V,Jardine MJ,Neal B等。:2型糖尿病和肾病中的Canagliflozin和肾脏结局。n Engl J Med 2019; 380:2295-2306。13。Cherney Dzi,Charbonnel B,Cosentino F等。:厄特曲霉素对2型糖尿病患者肾脏复合结果,肾功能和蛋白尿的影响:随机VERTIS CV试验的分析。糖尿病学2021; 64:1256-1267。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:位于蛋白质 - 水界面的Poly(Proline)II螺旋基序稳定天然蛋白质的三维结构。在此报告是合成仿生聚(脯氨酸)稳定的多肽纳米结构的第一个例子,该纳米结构是通过连续的N-羧基氢化物(NCA)聚糖的直接开环聚合诱导的自组装(ROPISA)过程获得的。发现使用多功能8臂启动器对于形成纳米颗粒至关重要。蠕虫状胶束以及球形形态。证明了纳米结构用染料的负载。这种快速和开放式的过程可访问具有在纳米医学中应用的基于氨基酸的纳米材料。
本文介绍了关于大脑供血动脉和 Willis 环 (CW) 模型中的流动的实验结果。血管模型是根据解剖标本准备的。考虑了最典型的动脉形状和尺寸。提供了 6 个特征点的压力分布,以及大脑前部、中部和后部的平均流速。在复制生理状态(即供血动脉完全畅通时)和病理条件下进行了测试,其中颈内动脉和椎动脉在一侧或两侧被阻塞。将所得结果与基于线性和非线性流动模型的计算机模拟结果进行了比较。为了估计血管段的非线性阻力,提出了两个现象学公式。从实验中获得的值与非线性计算机模型中记录的值之间的高度相关性证明了所提公式的实用性。验证了以下假设:血管段的流动特性非线性很大程度上是由其曲折和长度相对于直径较小造成的。非线性效应在供血血管病理性闭塞的情况下尤为明显。
背景和动机:离散动力系统是研究网络中扩散现象的形式化模型。这些模型的应用领域包括社会传染(例如信息、观点、时尚、流行病)的研究和能源需求建模(例如太阳能的适应)(Adiga 等人 2019 年;Chistikov 等人 2020 年;Ogihara 和 Uchizawa 2020 年;Gupta 等人 2018 年)。非正式地说,这样的动力系统 4 由一个底层(社会或生物)网络组成,每个节点都有一个来自域 B 的状态值。在本文中,我们假设底层图是有向的,域是二进制的(即 B = { 0,1 } )。传染病的传播由一组布尔局部函数建模,每个节点一个。对于任何节点 v ,v 处的局部函数 fv 的输入是 v 的当前状态及其邻居(即,v 具有传入边的节点)的状态,而 fv 的输出是下一时刻 v 的状态。我们考虑同步更新模型,其中所有节点都评估其局部函数并并行更新其状态。这些动力系统在文献中被称为同步动力系统 (SyDS)(例如,(Adiga 等人 2019;Rosenkrantz 等人 2018))。在涉及系统生物学的应用中,这样的系统也称为同步布尔网络(例如,(Kauffman 等人 2019))。
特别动态的理解功能可以需要构象状态的特征,这些构象状态仅暂时形成,并以稀疏为百分之几。4 - 6这些构象体通常在体验上表征体现。溶液状态NMR在检测和结构表征这些功能相关状态的能力方面已被证明是独一无二的,它们的寿命可以按几毫秒的速度处于几毫秒的状态,否则对实验措施“看不见”。6 - 8个这样的状态可以在诸如蛋白质折叠,分子识别和催化之类的多样化的过程中起重要作用,但表征仍然具有挑战性。9 - 16,用于具有新功能的工程蛋白,对于药物发现,显然需要能够表征,探索和操纵蛋白质访问的完整构象状态以及它们相互互换的机制。分子动力学(MD)模拟为在计算机中实现这一目标提供了一种有吸引力的方法。为了表征局部最小值的低振幅结构uccatututus,在几百个纳秒上的时间尺度上的模拟可能是稳定的。17,18个需要更长的模拟,以便用毫秒毫秒的生命值采样稀疏的“激发”构象状态。 目前只能使用不广泛可用的专用硬件来实现相对较小的蛋白质的“蛮力”计算。 19取得进展,两大类增强的采样方法17,18个需要更长的模拟,以便用毫秒毫秒的生命值采样稀疏的“激发”构象状态。目前只能使用不广泛可用的专用硬件来实现相对较小的蛋白质的“蛮力”计算。19取得进展,两大类增强的采样方法