摘要:地下合成已成为一种有力的策略,用于制造原子上精确的石墨烯纳米骨(GNR)的前所未有的形式。但是,锯齿形GNR(ZGNR)的地下合成仅取得了有限的成功。在此,我们报告了2,7-二溴-9,9' - 苯甲酰基的合成和表面反应,作为朝向π-延伸ZGNRS的前体。通过扫描隧道显微镜和高分辨率非接触原子力显微镜的表征清楚地证明了烟碱融合的ZGNR的形成。独特的骨骼重排,可以通过分子内多尔 - alder cycloadition来解释。对蒽接受ZGNR的电子特性的理论计算显示自旋极晶状体和0.20 eV的狭窄带隙。关键字:地下合成,石墨烯纳米替恩,表面反应,重排,边缘状态■简介
n-agp的场分布图(| e norm |); (b)AGP的电场分布图(| e Norm |)。
由于其强度,硬度和耐化学性,环氧粘合剂越来越使用。他们继续存在弊端,但仍然存在,例如较差的热稳定性和不良的电导率。二维石墨烯是一种出色的物质,具有出色的质量,包括高强度,高电导率和较大的表面积。由于这些特征,石墨烯已被彻底重新搜索其在包括电子,能源储能和生物医学工程在内的各种行业中的前瞻性用途。将石墨烯用作环氧粘合剂中的添加剂来增强此类材料的特征是其有前途的用途之一。本文回顾了有关格拉芬对环氧粘合剂的影响的最新发现。讨论了产生杂质 - 环氧复合材料及其改进的各种方法。这项研究还讨论了与石墨烯 - 环氧复合材料的生产和处理相关的挑战,以及机械,电气和热特性改善背后的机制。本评论的最后一部分讨论了将来石墨烯在环氧粘合剂中的挑战和前瞻性用途。
摘要:额叶聚合(FP)是一种比高压釜低的能量成本的热固性塑料的方法。已经讨论了同时产生多个聚合阵线传播的潜力,这是一种令人兴奋的可能性。但是,尚未证明在同时启动两个以上的FP。多点启动可以使大规模材料制造和独特的图案生成。在这里,作者提出了激光图案的光热加热,作为在2-D样品中多个位置同时启动FP的方法。碳黑色颗粒被混合到液体树脂(双环戊二烯)中,以增强从样品上的Ti:蓝宝石激光(800 nm)中的光吸收。激光是通过在启动点之间快速转向来分配的,从而产生了多达七个同时启动点的聚合。此过程导致形成由正面碰撞导致的对称和不对称接缝图案。作者还提供并验证一个理论框架,以预测前碰撞形成的接缝模式。此框架允许通过反向解决方案设计新模式,以确定形成所需模式所需的启动点。这种方法的未来应用可以使新型复合材料样式材料的快速,节能生产。关键字:额叶聚合,图案材料,光热启动,激光启动,双环齿丹■简介
摘要:聚合物的许多理想特征源于其重复单元的聚合方法和结构特征,这些方法通常是由于可加工性成本而导致聚合物的性能。虽然线性替代方案很受欢迎,但通常证明由骨干上的循环重复单元组成的聚合物通常显示出较高的光学透明度,较低的吸收和较高的玻璃过渡温度。这些特定的包括用取代的蓝环或芳族环或两者兼而有之的聚合物。在本评论文章中,我们强调了两个有用的环形聚合物基团,每个胞核丁基(PFCB)芳基聚合物和基于 - 二烯烯丙烯 - (ODA)基于基于的二烯丙烯 - (ODA)基于良好的热稳定性,既表现出杰出的热稳定性,化学抗性稳定性,化学耐药性,机械完整性和提高的加工能力。讨论了不同的合成途径(重点放在环形聚合中)和这些聚合物的性能,然后在广泛的方面进行了相关应用。
在两个电极之间传输。已经对锂离子电池进行了广泛的研究,但几个关键过程,主要与它们对电极的反应性有关,但仍有几个关键过程尚待充分说明。[1]没有电解质在锂离子电池的负石墨电极上本质上是稳定的,而可逆细胞化学反应强烈依赖于固体电解质相(SEI)的形成。SEI是一个NM薄的多相复合层,通常是在锂离子电池的第一个电荷/放电周期之后从电解质的降解产物中形成的石墨。尽管几十年前已经建立了关于SEI重要性的一般性感,但其形成和操作机制仍在激烈地进行辩论。尽管如此,通常观察到SEI的性能在很大程度上取决于使用的电溶剂。可行的锂离子电池电解质上的溶剂上的必需需求是高电介质构造,低粘度,较大的液体温度间隔和与所有细胞成分接触的稳定性。[1]
摘要:最近,基于聚合物的复合材料在低温条件下的应用已成为一个热门话题,尤其是在航空航天领域。在低温温度下,聚合物变得更脆,温度引起的热应力的不利影响更为明显。在本文中,综述了热塑性和热塑性聚合物用于低温应用的研究开发。本综述考虑了有关的文献:(a)经过修饰的热固性聚合物的低温性能以及所报道的修饰方法的改进机制; (b)某些商业热塑性聚合物的低温应用潜力以及经过修饰的热塑性聚合物的低温性能; (c)最近将聚合物用于特殊的低温环境液氧的进步。本文概述了针对低温应用聚合物的研究开发。此外,已经提出了未来的研究指示,以促进其在航空航天中的实际应用。
从二维 (2D) 分子构建富含 sp3 的三维 (3D) 支架极具挑战性,但对有机合成和药物发现项目有重大影响。1 [4 + 2] 环加成反应被认为是实现此目的的有力工具,其中两个新的 s 键和一个 p 键由两个简单的不饱和反应组分二烯和亲二烯体在 3D 六元环拓扑中形成(图 1a)。2,3 事实上,这种热允许过程多年来一直是一种基本反应类型,展示了其分子复杂性产生能力。4 在这方面,多环芳烃如萘也含有交替双键。此外,它们是丰富且廉价的原料化学品。 5 然而,这些 2D 分子在 3D 复杂环加成反应中的应用有限,因为与破坏芳香性(共振能量 = 80.3 kcal mol −1 )和选择性(图 1b 和 c)赋予的稳定性相关的严峻挑战。 6 典型的萘热 [4 + 2] 环加成需要苛刻的反应条件(高温高达 210 C,压力高达 10 3 atm),7