集中太阳能(CSP)和钙环(CAL)之间的整合正在考虑在可再生能源的大股份的角度考虑,以平滑不可匹配的能量输入的可变性。这项研究的范围是通过在适用于CAL-CSP集成的现实过程条件下在流化床中进行专门的实验运动来研究热化学能量储存(TCE)的CAL过程。通过测量沿迭代的钙化/碳化循环的Ca碳化程度,已经评估了基于石灰石的吸附剂的化学失活,这与转换选定阶段的物理化学炭化相关。经过审查的特性是层粒子的分布,块状密度以及床固体的粒径,密度和孔隙率。也评估了能源储能密度的可达到的值。实验运动的一个了不起的发现是在与二氧化硅砂一起加工时,石灰石的显着停用了。在过程温度下,CAO与二氧化硅砂成分的化学相互作用已被仔细检查,以造成反应性CAO对CO 2摄取的损失。颗粒密度数据的后处理以及N 2入口的孔隙法分析以及定量和定性XRD分析,这表明沙/石灰相互作用可促进总和反应性吸附的孔隙率的强烈降低,而反应性则是反应性的。基于密度的分类,用于评估碳化步骤后分离和未转化的石灰石颗粒,以提高过程效率的目的,通过避免通过工厂的未反应颗粒的流循环流循环。为此,在相关过程温度下每个反应步骤后,已经测量了钙化颗粒和碳酸颗粒的最小流体速度。
摘要 我们分析了在高能中潮沙洲海滩进行的为期 3 周的现场试验中收集的波浪诱导环流的欧拉和拉格朗日测量数据,该海滩有 500 米长的岬角和水下珊瑚礁。研究发现,波浪和潮汐条件的微小变化会极大地影响环流模式。根据离岸波浪倾角,确定了三种主要状态:(1)在沿岸正常配置下,除了低潮时的中等波浪外,流动以横岸运动为主,珊瑚礁上存在准稳定环流单元。(2)在阴影配置下,阴影区域内外分别存在流离岬角的向岸电流和弱振荡涡旋。(3)在偏转配置下,存在流向岬角并延伸到冲浪区以外的偏转裂口,中等波浪的活动在低潮时达到最大值。在 4 米斜波下,无论潮汐如何,偏转裂口都会活跃,平均深度平均速度高达 0.7 米/秒,离岸 800 米,深度 12 米,具有能量低频波动。我们的研究结果强调了偏转裂口将物质输送到远海的能力,表明此类裂口可以将沉积物输送到闭合深度之外。这项研究表明,在具有突出地质背景的海滩上,可以出现各种各样的波浪驱动环流模式,有时这些模式会共存。由于波浪和潮汐条件的微小变化,主要驱动机制可能会发生变化,从而导致环流在空间和时间上的变化比开放沙滩更大。
冰盖对边界条件的变化做出动态响应,例如气候变化、基底热条件和底层基岩的均衡调整。这些导致冰盖向新的平衡演变。涉及长达 10 4 年的长响应时间尺度,由冰厚度与年质量周转率的比率、床的物理和热过程以及影响冰粘度和地幔粘度的过程决定。反馈过程可能会放大或减轻冰盖对强迫的调整,或者内部不稳定性可能会因动态流动状态的变化而导致冰量快速变化,从而使冰盖的响应变得更加复杂。开发冰流数值模型的主要动机是为了更好地了解冰盖和冰川的空间和时间行为,并预测它们对外部强迫的响应。冰盖动力学建模提供了一个强大的框架,可以定量研究过去和未来环境中冰盖与气候系统之间的复杂相互作用。冰流模型通常基于描述冰川流动的基本物理定律和假设。冰盖模型类别的顶端是所谓的三维热机械模型,它们能够描述真实冰盖随时间变化的流动和形状。这些模型类似于气候科学其他分支中开发的一般环流模型。它们的发展紧随计算机能力、冰芯和沉积物钻探、遥感和地球物理年代测定技术等领域的技术进步,这些技术进步既提供了所需的计算手段,也提供了输入和验证这些模型所需的数据。此类模型已应用于格陵兰岛和南极洲现有的冰盖,以及第四纪冰河时期覆盖北半球大陆的冰盖。典型的研究集中在第三纪冰盖形成的机制和阈值(Huybrechts,1994a;DeConto & Pollard,2003)、冰期-间冰期旋回期间冰盖的形式和范围(Marshall 等人,2000;Ritz 等人,
垃圾 1 的产生是一个日益严重的全球性重大问题。人口增长、富裕程度提高以及缺乏适当垃圾管理系统的快速城市化加剧了这场全球垃圾危机。世界银行 2 估计,到 2050 年,全球固体垃圾年产生量将从 2016 年的 20 亿吨增加 69% 至 34 亿吨。高收入经济体仅占世界人口的 16%,但却贡献了全球垃圾的三分之一。另一方面,低收入经济体的人均垃圾产生量越来越大,而垃圾管理系统效率低下和意识缺乏则尤其加剧了这一问题(Kaza 等人,2018 年;McAllister,2015 年)。管理不善的垃圾会污染海洋、滋生疾病、释放甲烷等有害温室气体,并散落在地面上,对健康和经济造成危害。管理塑料垃圾尤其具有挑战性,因为塑料不仅不可生物降解,而且产量巨大:仅在 2016 年,全球就产生了 2.42 亿吨塑料垃圾,占所有城市固体垃圾的 12%。3 大量塑料垃圾最终流入海洋,形成垃圾环流,例如臭名昭著的“太平洋垃圾带”,海洋中漂浮的塑料垃圾估计有 8 万吨。4 这些海洋塑料令人担忧,因为它们会释放出有毒化学物质,缠住海洋生物,被海洋动物吞食,并最终进入人类的食物链。海洋塑料还影响经济,给旅游业、水产养殖业和渔业带来成本。德勤和海洋清洁组织的一项研究估计,海洋塑料每年造成的经济损失约为 60 亿至 190 亿美元。 5 1 在本政策摘要中,废弃物定义为在消费或生产过程中处理的任何产品或材料,包括固体、液体、气体、可回收和有机废弃物。 2 https://openknowledge.worldbank.org/handle/10986/30317 3 同上。 4 https://theoceancleanup.com/great-pacific-garbage-patch/ 5 同上。 6 https://www.apec.org/Meeting-Papers/Leaders-Declarations/2015/2015_aelm
图表 图 1-1 水平机动 ................................................................................................................ 1-4 图 1-2 垂直机动 ................................................................................................................ 1-5 图 1-3 EM 图 (10,000 MSL) ............................................................................................ 1-6 图 1-4 升力限制和转弯空速 ...................................................................................................... 1-7 图 1-5 可用 G 值 ................................................................................................................ 1-8 图 1-6 转弯速率带 ................................................................................................................ 1-9 图 1-7 转弯半径带 ................................................................................................................ 1-10 图 1-8 T-45C 性能表 ............................................................................................................. 1-11 图 1-9 T-45C 尾部倾斜 (AOT) ............................................................................................. 1-12 图 1-10 气泡、控制区和攻击窗口 ................................................................................. 1-12平面外机动 ................................................................................................ 1-14 图 1-12 平面内与平面外追击曲线 .......................................................................................... 1-15 图 1-13 领先追击、纯追击和滞后追击 ...................................................................................... 1-16 图 1-14 单环流 ...................................................................................................................... 1-16 图 1-15 双环流 ...................................................................................................................... 1-17 图 1-16 高溜溜球 ...................................................................................................................... 1-19 图 1-17 低溜溜球 ...................................................................................................................... 1-20 图 1-18 位移滚转 ...................................................................................................................... 1-21 图 1-19 3/9 线超越 ............................................................................................................. 1-22 图 1-20 飞行路径超越 ............................................................................................................. 1-22 图 1-21 近距过冲,反转滚动...................................................................................... 1-23 图 1-22 反转时序...................................................................................................... 1-23 图 1-23 平剪刀......................................................................................................................... 1-24 图 1-24 滚动剪刀........................................................................................................................................... 1-26 图 1-25 CNATRA 武器包线 .............................................................................. 1-27 图 1-26 翼尖打开,机枪“D”低 .............................................................................. 1-31 图 1-27 9K' 设置在气泡外/纯追逐以进入气泡 ............................................................. 1-33 图 1-28 9K' 攻击窗口进入机械 ...................................................................................... 1-33 图 1-29 9K' 设置未对准的转弯圆环 ............................................................................. 1-34 图 1-30 使用照明弹进行防御性突破转弯 ............................................................................. 1-35 图 1-31 在气泡内匹配攻击者的拉力 ............................................................................. 1-36 图 1-32 成功速率管理返回中立传球 ............................................................................. 1-36 图 1-33 尽可能偏离,180 度向外................................................................... 1-37 图 1-34 6K' 设置,刚好在气泡外 .............................................................................. 1-38 图 1-35 首先向出发点滞后,然后跟进水上迫降 ........................................................ 1-39 图 1-36 水上迫降机制,拒绝控制区 ............................................................................. 1-40 图 1-37 3K' 设置,在气泡内 ............................................................................................. 1-42 图 1-38 完成战斗,机动到武器使用 ............................................................................. 1-43 图 1-39 甲板上反转 ............................................................................................................. 1-44 图 1-40 专用转弯空间 ............................................................................................. 1-47 图 1-41 垂直合并 ............................................................................................................. 1-48 图 1-42 高机头反击 ............................................................................................................. 1-49 图 1-43 首次移动选项,水平 ................................................................................ 1-50 图 1-44 第一次移动选项,机头高 .............................................................................. 1-51........................................................... 1-34 图 1-30 使用照明弹进行防御性突破转弯 .............................................................................. 1-35 图 1-31 在气泡内匹配攻击者的拉力 .............................................................................. 1-36 图 1-32 成功速率管理返回中立传球 ............................................................................. 1-36 图 1-33 尽可能偏离,180 度外 ............................................................................................. 1-37 图 1-34 6K' 设置,就在气泡外 ............................................................................................. 1-38 图 1-35 首先滞后向出发点飞行,然后跟进迫降 ............................................................................. 1-39 图 1-36 迫降机制,拒绝控制区 ............................................................................................. 1-40 图 1-37 3K' 设置,在气泡内 ............................................................................................. 1-42 图 1-38 完成战斗,机动到武器使用 ............................................................................. 1-43 图 1-39 甲板上反转 ...................................................................................................... 1-44 图 1-40 专用转弯空间 ................................................................................................ 1-47 图 1-41 垂直合并 ................................................................................................................ 1-48 图 1-42 机头上反击 ............................................................................................................. 1-49 图 1-43 第一个移动选项,水平 ............................................................................................. 1-50 图 1-44 第一个移动选项,机头上 ............................................................................................. 1-51........................................................... 1-34 图 1-30 使用照明弹进行防御性突破转弯 .............................................................................. 1-35 图 1-31 在气泡内匹配攻击者的拉力 .............................................................................. 1-36 图 1-32 成功速率管理返回中立传球 ............................................................................. 1-36 图 1-33 尽可能偏离,180 度外 ............................................................................................. 1-37 图 1-34 6K' 设置,就在气泡外 ............................................................................................. 1-38 图 1-35 首先滞后向出发点飞行,然后跟进迫降 ............................................................................. 1-39 图 1-36 迫降机制,拒绝控制区 ............................................................................................. 1-40 图 1-37 3K' 设置,在气泡内 ............................................................................................. 1-42 图 1-38 完成战斗,机动到武器使用 ............................................................................. 1-43 图 1-39 甲板上反转 ...................................................................................................... 1-44 图 1-40 专用转弯空间 ................................................................................................ 1-47 图 1-41 垂直合并 ................................................................................................................ 1-48 图 1-42 机头上反击 ............................................................................................................. 1-49 图 1-43 第一个移动选项,水平 ............................................................................................. 1-50 图 1-44 第一个移动选项,机头上 ............................................................................................. 1-511-43 图 1-39 甲板上反转 ...................................................................................................... 1-44 图 1-40 专用转弯空间 ................................................................................................ 1-47 图 1-41 垂直合并 ................................................................................................................ 1-48 图 1-42 机头上反击 ............................................................................................................. 1-49 图 1-43 第一个移动选项,水平 ............................................................................................. 1-50 图 1-44 第一个移动选项,机头上 ............................................................................................. 1-511-43 图 1-39 甲板上反转 ...................................................................................................... 1-44 图 1-40 专用转弯空间 ................................................................................................ 1-47 图 1-41 垂直合并 ................................................................................................................ 1-48 图 1-42 机头上反击 ............................................................................................................. 1-49 图 1-43 第一个移动选项,水平 ............................................................................................. 1-50 图 1-44 第一个移动选项,机头上 ............................................................................................. 1-51
通过了解控制动力学并可能利用特定现象,可以在设计的最初阶段增强空气动力学系统(例如航空航天器、船舶、潜艇、离岸结构和风力涡轮机)的性能。控制这些系统空气动力学性能的方程可能包括非线性偏微分方程(例如 Navier-Stokes 方程)。计算机硬件和软件的最新进展使得数值模拟成为可能,其中上述方程被离散化并与稳健的数值算法相结合。虽然这些高保真方法在捕捉主要物理特征方面非常有效,但它们涉及以复杂方式相互关联的多种现象,必须以大量自由度来解决。此外,使用这些工具所需的大量计算资源和时间可能会限制模拟大量配置以用于设计目的的能力。这些缺点导致需要开发简化的模拟工具,以降低计算成本,同时体现相关的物理方面和响应特性。在本文中,我们提出了一种基于非稳定涡格法 (UVLM) 的势流求解器(即 PyFly)的快速高效实现。该计算工具可用于模拟运动和变形物体(如拍打的机翼、旋转的叶片、悬索桥面和游动的鱼)的非稳定气动行为。UVLM 计算由加速度和环流现象导致的物体表面压力差异所产生的力。这解释了非稳定效应,例如增加的质量力、束缚环流的增长和尾流。UVLM 仅适用于理想流体、不可压缩、无粘性和无旋流,其中分离线是先验已知的。因此,UVLM 的公式要求流体在后缘平稳离开机翼(通过施加库塔条件),并且不涵盖前缘流动分离的情况和发生强烈机翼尾流相互作用的极端情况。尽管存在所有这些限制,研究工作仍考虑使用 UVLM 设计前向和悬停飞行中的类似鸟类的扑翼 [2、3、4、5]、风力涡轮机建模 [6] 以及土木工程结构的控制和振动抑制 [7、8]。虽然快速运行时间通常是科学软件项目的目标,但我们认识到简单的用户界面也是框架使用的一个重要方面。一个理解和使用起来很复杂的高效框架不会减少工程师的解决问题的时间,尽管生成的代码执行速度很快。但是,易于使用的语言的性能通常会慢几个数量级。这两种情况都不理想。PyFly 的目标是提供一个基于 UVLM 的友好气动模拟框架,该框架在计算上也是高效的。我们通过使用混合语言编程来实现这一点。我们使用 Python [9] 进行网格对象的高级管理,使用 Fortran 作为必须高效运行的计算内核。虽然数值方法不会因不同的应用程序而改变,但不同应用程序提出的要求可能会变得复杂难以管理。例如,在扑翼的情况下,需要管理机翼及其尾流。对于对称飞行,我们还必须跟踪机翼镜像的影响。然而,在
AHR Goldie 博士于 1912 年 1 月去世,享年 7.5 岁,他一生中有一半以上的时间都是英国气象界的活跃人物。他于 1914 年成为该协会的会员,并曾担任顾问和副主席。Archibald Hayman Robertson Goldie 于 1918 年出生于安格斯的 Glenisha,是牧师 Andrew Goldie 的儿子。在邓迪的哈里斯学院上学后,他在圣安德鲁斯大学和剑桥大学圣约翰学院以优异的成绩学习,并于 1913 年以数学 Tripos 的成绩毕业。他于 1913 年 8 月进入气象办公室,是 1918 年战争前当时的主任 Ilr. WN Shaw(后来的纳皮尔爵士)招募的最后一批具有高科学资质的人员之一。戈尔迪在气象局的最初经验是在总部、法尔茅斯天文台(当时他希望为英格兰西南部建立一个气象中心)和埃斯克代尔缪尔天文台任职的相对较短的一段时间内获得的。1915 年,戈尔迪被任命加入新成立的气象部门,随后在法国任职,在意大利北部任职六个月,直到 1918 年 11 月停战后,他以少校身份指挥总部设在科隆的占领军气象部门。1919 年 11 月复员后,他回到伦敦的气象局总部,负责管理主要为满足航空、民用和军用气象需求而设立的当地中心网络。1921 年秋,他接替了戈尔迪。 A. Crichton 被任命为爱丁堡气象局局长,负责苏格兰的气候和一般咨询工作以及阿伯丁、埃斯克代尔缪尔和勒威克的天文台:事实证明,这项任命对他来说非常合适,而且卓有成效。他于 1925 年成为爱丁堡皇家学会会员,并于 1936 年在圣安德鲁斯大学获得理学博士学位。当 1938 年初制定扩大气象局研究活动的计划时,Goldie 被调到伦敦担任助理主任,特别负责该领域,但在当年晚些时候战争爆发后,他搬到了格洛斯特郡的斯通豪斯,负责管理撤离到那里的气候、仪器和海洋部门。 1941 年,气象研究委员会成立,由于战争爆发而推迟,此后直到 1953 年,他一直密切参与其行政和其他活动。1948 年,他成为副首席科学官,并被任命为研究副主任,负责办公室内研究的总体协调,更直接的研究方向是气象物理学,包括气象研究飞行队进行的研究、低层大气湍流研究、仪器开发和天文台工作。1950 年初,气候学和海洋分支再次归到他的领导下。戈尔迪曾参与英国国家大地测量和地球物理委员会、大气污染研究委员会 (DSIR) 和阵风研究委员会(由航空研究委员会赞助)。1936 年至 1947 年,他担任国际地磁和大气电协会秘书。1951 年,他被任命为 CHE。1953 年 5 月退休,在气象局工作近 40 年后,他回到苏格兰,住在斯特灵。尽管戈尔迪还有其他官方承诺,但他对科学研究的热情一直没有改变。在他退休时,据记载,他“具有非凡的管理能力,能够同时进行高水平的个人研究”。从 1923 年起,大约 30 年间,他在该学会、爱丁堡皇家学会和气象局的出版物上发表了 17 篇论文。此外,他还为科学期刊发表了几篇短文。1934 年,他修订并大量重写了 Abercromby 于 1887 年首次出版的著名著作《天气》。他的论文总体上表明,他坚持不懈地致力于阐明大气过程机制的细节,并能够最大限度地利用当时可用的观测数据。这里只能简要地提及他的主要贡献主题,大致按时间顺序排列:高压和低压条件下高空温度的分布;大气中波浪的形成及不连续水平面的其他特性;风的阵性;受昼夜变化影响的大气结构和运动;地磁暴中的高大气电流系统;不同气团和低气压锋面的降雨特性;贝尔岩灯塔的风结构分析;不列颠群岛的年平均空气环流;低气压和涡旋低气压的运动学特征;飞机凝结尾迹的形成条件;气旋和反气旋的动力学;全球一般环流问题。戈尔迪博士是一个非常可爱的人。他在私人和职业生活中都有很高的个人标准。他在工作中注意节约用力,但在必要时也不吝啬努力。他总是帮助同事,并以身作则,发挥很大的影响。他热情好客,对同事及其家人十分关爱。1928 年,他与 Marion Wilson 结婚,后者于 1048 年去世;1952 年,他与协会会员 Helen Carruthers 结婚。