摘要。四苯基卟啉 (TPP) 是一类有趣的有机分子,其特征是环状结构,中心有金属离子。通过适当修改反应界面,即使在金属基底上也可以获得此类分子的有序生长,正如我们对与氧钝化的 Fe(001) 偶联的 ZnTPP 分子所展示的那样 [G. Bussetti 等人。Appl. Surf. Sci. 390, 856 (2016)]。最近,我们专注于 CoTPP 分子,其特征是磁矩不为零,因此对磁性应用具有潜在意义。与 ZnTPP 的情况一样,我们对一个单层覆盖的结果报告了平躺分子的有序组装的形成。然而,在堆积方案和与基底的电子相互作用程度方面,观察到两种分子物种之间存在一些差异。为了对 CoTPP 也获得对 Fe 上分子组织的全面了解,我们在此补充了我们之前的研究,通过跟踪 CoTPP 薄膜的生长以增加覆盖率,表明确实实现了此类分子的有序堆叠,至少最多四个分子层。
摘要:尽管该领域取得了开创性的进展,但由于药物过早释放到血液中以及生物分布不良,药物安全性和有效性仍然是一个问题。为了克服这些限制,我们报告了基于动态共价键的药物环化,以设计小分子抗癌药物喜树碱 (CPT) 的双重锁定。药物活性被氧化还原响应的二硫化物和 pH 响应的硼酸-水杨基羟肟酸酯“锁定”在环状结构中,并且仅在酸性 pH、活性氧和谷胱甘肽存在下通过无痕释放开启。值得注意的是,双重响应的 CPT 比不可裂解(永久闭合)类似物活性更高(100 倍)。我们进一步在主链中加入了生物正交手柄,用于功能化生成环状锁定、细胞靶向的肽和蛋白质 CPT,用于药物的靶向递送和在三阴性转移性乳腺癌细胞中的无痕释放,以在低纳摩尔浓度下抑制细胞生长。
Martini 粗粒度力场 Martini 3 的最新重新参数化提高了该模型在预测分子动力学模拟中的分子堆积和相互作用方面的准确性。在这里,我们描述了如何在 Martini 3 框架内精确参数化小分子,并提供了一个经过验证的小分子模型数据库。我们特别关注脂肪族和芳香族环状结构的描述,这些结构在溶剂和药物等小分子或蛋白质和合成聚合物等大分子的构成块中普遍存在。在 Martini 3 中,环状结构由使用更高分辨率粗粒度颗粒(小颗粒和微小颗粒)的模型描述。因此,本数据库构成了校准新 Martini 3 小颗粒和微小颗粒尺寸的基石之一。这些模型表现出出色的分配行为和溶剂性能。还捕获了不同本体相之间的可混溶性趋势,从而完成了参数化过程中考虑的一组热力学性质。我们还展示了新的珠子尺寸如何能够很好地表示分子体积,从而转化为更好的结构特性,例如堆叠距离。我们进一步介绍了设计策略,以构建复杂度更高的小分子的 Martini 3 模型。
摘要:自古以来,人们就使用各种防御机制来对抗动物和人类的多种传染病;然而,从十九世纪初开始,疫苗被广泛制造和使用。利用植物疫苗是一种不断发展的生物技术工具,在对抗病毒、细菌和真菌疾病方面具有无限潜力。转基因植物的开发涉及通过选定的遗传转化方法将病原体的所需抗原整合到选定的宿主植物中。土豆是载体绿色工厂疫苗的主要候选者;由于它们可以轻松储存较长时间,因此被广泛种植——是全球人们的第四大食物选择,具有无可挑剔的营养价值:富含维生素 C 和锌,因此由于其简单的种植方式,它们在撒哈拉以南非洲大多数资源匮乏的环境中具有显著更高的疾病控制潜力。马铃薯具有单克隆繁殖能力,其亚基蛋白无毒部分形成五聚体环状结构,降低了基因水平转移到野生型的可能性。本综述文章阐述了植物源可食用疫苗相对于传统口服疫苗的显著优势。关键词:可食用疫苗;转基因植物;马铃薯;亚基蛋白;疫苗抗原
角菜属(Cerastium alpinum)约有 200 个物种,主要分布在北半球的温带气候中。我们在此报告了角菜(Cerastium alpinum)、北极角菜(C. arcticum)和黑色角菜(C. nigrescens)的完整叶绿体基因组。cp 基因组长度范围为 147,940 至 148,722 bp。它们的四部分环状结构具有相同的基因组织和内容,包含 79 个蛋白质编码基因、30 个 tRNA 基因和 4 个 rRNA 基因。每个物种的重复序列从 16 到 23 个不等,回文重复最为常见。每个物种已鉴定的 SSR 数量范围为 20 到 23 个,它们主要由含有 A/T 单元的单核苷酸重复组成。根据 Ka/Ks 比率值,大多数基因受到纯化选择。新测序的叶绿体基因组具有高频率的 RNA 编辑特征,包括 C 到 U 和 U 到 C 的转换。基于 71 个蛋白质编码基因的序列,重建了 Cerastium 属和石竹科内的系统发育关系。系统发育树的拓扑结构与所研究物种的系统位置一致。Cerastium 属的所有代表都聚集在一个分支中,而 C. glomeratum 与其他分支的相似性最小。
质粒是一种自主复制的染色体外环状 DNA 分子,不同于正常的染色体 DNA,在非选择性条件下对细胞存活并非必需。细菌质粒是双链 DNA 的闭合环状分子,大小从 1 到 >200 kb 不等。它们存在于多种细菌物种中,在这些细菌物种中,它们表现为独立于细菌染色体遗传和复制的额外遗传单位。质粒通常含有编码酶的基因,这些酶在某些情况下对宿主细胞有利。编码的酶可能与抗生素耐药性、对环境中的毒素(例如复杂的有机化合物)的耐药性或细菌自身产生的毒素有关。质粒一词最早由美国分子生物学家 Joshua Lederberg 于 1952 年提出。同年,J. Lederberg 回顾了细胞遗传方面的文献,并建议将所有染色体外的遗传决定因素称为“质粒”。与细菌染色体相比,质粒的尺寸非常小,较老的质粒仅为大肠杆菌染色体尺寸的 0.8%,尽管存在其他比这个尺寸小的质粒,但 Pl. DNA 和 Ch. DNA 非常相似,环状结构为一个二进制字符串,但在细胞内,与染色体不同,质粒牢固地缠绕在自身周围,形成所谓的超卷曲质粒或共价闭合环状 (CCC)。如果已知质粒的表型标记(例如抗生素抗性),建议在选择压力下培养细胞以避免质粒丢失。
锂硫电池 (LSB) 是后 LIBs 技术最有前途的候选者之一。[10–12] 在 LSB 中,通过硫和锂之间的多电子反应可实现 1675 mAh g −1 的理论容量。放电过程中会出现两个不同的电压平台。在较高的电压平台(约 2.3 V)下,S 的最稳定的同素异形体 S 8 的环状结构被破坏,形成长链多硫化锂;一开始是 Li 2 S 8 ,然后进一步还原为 Li 2 S 6 和 Li 2 S 4 。在较低的电压平台(约 2.1 V),长链多硫化锂进一步还原为 Li 2 S 2 和 Li 2 S。[13,14] 除了理论容量高之外,地球上 S 的储量丰富、价格低廉以及环境友好等特性使得 LSB 比 LIB 更便宜。然而,LSB 的工业化进程中仍存在一些障碍。[15,16] 首先,S 和放电产物 Li 2 S 本质上都是绝缘的(≈ 5 × 10 − 30 S cm − 1)。电极材料的低电导率会影响电池的电化学性能,尤其是在高电流密度下。其次,充放电过程中体积变化大会导致安全性和稳定性问题。由于 S 和 Li 2 S 的密度差异,当 S 转移到 Li 2 S 时,体积变化将高达 75%。最后,臭名昭著的穿梭效应会进一步导致性能下降。充放电过程中形成的多硫化锂可溶于电解液。这些中间体在正极和负极之间穿梭,并通过公式(1)和(2)所示的化学反应或电化学反应与电极材料发生反应,导致锂负极的消耗和“死”硫的形成,最终导致库仑效率和稳定性降低。
名称:环状四腺苷单磷酸盐,钠盐Syn。:环状四核酸 / C-A4 / CA 4描述:C-Tetraamp是一种环状核苷酸,其中四个5'-AMP单元通过3'-5'磷酸二酯键相互连接以形成环状结构。特性:发现环状寡磷酸盐(例如C-tetraamp)是与许多原核生物中与侵入性遗传元件相关的III型CRISPR-CAS相关检测和降解的新型细菌第二信使。在识别和结合侵入性靶RNA后,III型干扰络合物的CAS10亚基会产生环状寡腺苷酸盐,进而充当CSM6核糖核酸的变构激活剂,从而降解了入侵者衍生的RNA转录物。建议循环寡核苷酸的大小取决于存在的III型CRISPR-CAS系统,其中c-tetraamp是Thermus Thermophilus中主要的信号分子(根据Kazlauskiene等人的所有数据,(2017)和Niewoehner等。(2017))。规格:结晶或冻干的钠盐。请记住,由于冻干形式对湿度的敏感性,该化合物的相等浓度可能会不同。该化合物甚至可以收缩至小体积液滴。通常,产品位于管的圆锥形底部。微摩尔量通过紫外线以max确定。纯度:典型分析要大于95%(HPLC / UV / 259 nm)。该产品不是无菌的,尚未对内毒素进行测试。打开管子时,请确保在盖子内不会丢失任何物质。溶解度:C-Tetraamp可溶于水和水缓冲液(≥8mm,尚未确定限制)。请仔细,最好使用超声波或涡流来实现总和混合。稳定性和存储:C-Tetraamp在室温下具有足够的稳定性,并且在处理或发货期间不需要特殊护理。尽管如此,我们建议该化合物应在冰箱中存储,在较长的储存周期中,最好以冷冻干燥的形式存储。
化石燃料的消耗量不断增加,导致能源危机和环境问题,严重影响人类的日常生活。迄今为止,人们已经付出了巨大的努力来探索可持续、环保和可再生能源来替代化石燃料。在过去的几十年中,各种能量转换和存储技术,如水分解(Zhang F. et al., 2019; Hu et al., 2021; Wu et al., 2021)、质子交换膜燃料电池(Edwards et al., 2008; Park et al., 2012)、氮还原反应(NRR)(Wan et al., 2019; Zhang W. et al., 2019; Yang et al., 2020b; Li et al., 2021)、CO 2 还原反应(CO 2 RR)(Ozdemir et al., 2019; Liu et al., 2020; Yang et al., 2020a; Ma et al., 2021; Wang et al., 2021)和金属-空气电池(Cheng and Chen, 2012)等,已经取得了长足的进步。纳米材料因其高效、能源安全和环保等特点,已展现出良好的发展前景。在这些领域,制备性能优异的先进材料以及开发先进的预测、表征和检测技术受到了越来越多的关注(Centi,2020)。电催化NRR制NH 3 因其在环境条件下能耗较低而被视为传统Haber-Bosch工艺的一种有吸引力的替代方案(Tang and Qiao,2019;Yang et al.,2020b)。开发性能优异、成本低的先进NRR催化剂是十分必要的。最近,Wang等报道环状V 2 O 3 纳米结构可以在环境条件下有效地将N 2 转化为NH 3 。扫描电子显微镜分析表明,环状结构均匀,外径为350–500nm。透射电子显微镜(TEM)分析证实这种纳米环具有粗糙的表面,显示出更多的活性位点。单个纳米环的高分辨率 TEM 图像显示收缩的晶面间距为 0.211 nm,对应于 (113) 平面。这项工作提出了一种制造用于 NRR 的先进非贵金属催化剂的简便策略。相信未来将开发出更有效、更稳定的电催化剂来促进 NRR。