补偿温室气体排放的过程之一是去除大气碳和陆地生物圈中的储存。返回树木的农业系统与农作物和动物一起仔细管理被认为是实质性的二氧化碳水槽。人们越来越意识到农林业的重要性,因为它对环境和农业有益。在这项研究中,研究了来自地上生物量碳(ABGC),森林地板碳(FFC)和土壤有机碳(SOC)的总碳池,并分析了北部泰国北部北部北部北部地区的某些农业财产习惯的碳存储数据。还讨论了这些碳池在降低大气中二氧化碳浓度中的作用。结果表明,来自传统农林业(TAF),应用农林业(AAF)和开发的农林业(DAF)的总碳库存差异。TAF,AAF和DAF的总碳店(ABGC + TFFC + SOC)分别为267.05 mg c/ha,226.48 mg c/ha和324.70 mg c/ha。SOC贡献了47.64%,54.26%和44.81%,ABGC贡献了22.75%,19.79%和23.90%的贡献,分别为TAF,AAF和DAF的总碳股票。在TAF,AAF和DAF中,CO2吸附分别为979.27 mg CO2/HE,830.50 mg CO2/HA和1,190.6 mg CO2/HA。很明显,农林业系统是陆地生态系统中的碳汇。尽管对碳减少碳和其他土地使用类型的比较对于碳水化合物的碳减少和实施“土地利用,土地利用变化和林业”的实施至关重要,但对于二氧化碳的概念来说,对碳序列的潜力也至关重要。
使用环丙沙星作为抗生素可以在环境中产生残基,尤其是水生环境,这对生态系统产生负面影响。DIV>分散固相提取技术被选择作为环境中环丙沙星残基监测的制备技术。氧化石墨烯用作分散固相提取技术中的吸附剂。氧化石墨烯是由木薯皮质浪费合成的,木薯皮是使用改良的鹰嘴豆泥法具有较高的碳和纤维素含量的。使用傅立叶转换光谱,X射线衍射和电子显微镜仪器进行氧化石墨烯的表征。使用响应表面方法进行优化,以根据吸附剂,pH,环丙沙星浓度的剂量获得最佳环丙沙星吸收条件,并使用Bhenken盒设计进行接触时间。具有pH状况4.8的吸收条件;联系时间35分钟;环丙沙星908 PPB浓度,使用27.37 mg的石墨烯,能够产生99.92%的吸附功率。这表明,木薯皮质废物的氧化石墨烯可以用作环丙沙星抗生素的吸附剂,可用于监测水生环境和废水(尤其是医院废水)中的抗生素残基。
许多量子算法中的关键元素[21,40]。具体示例包括Shor的算法[46],幅度估计[11],量子大都市采样[49],状态预先促进[44],大规模线性方程式[25]的解决方案[25]和一些非线性问题[48]。此外,它还在量子化学中直接应用[3,5,6,9,32,43,50,52]。该算法已包含在各种软件包中[6,14,53,54]。通常使用其特征向量|为单位运算符u进行相位估计算法| ψ⟩作为输入。通过将Hadamard Gates与受控门一起应用,算法将相变的二进制位映射到计算基础上,然后可以使用倒数量子傅立叶变换来提取该列表[40]。在[40]中概述了一个有见地的复杂性分析,该分析为所需量子位的数量提供了下限,t⩾N + log 2 + 1
Thomas Parr、Giovanni Pezzulo、Karl J. Friston (2022) “主动推理:自由能量原理
[背景和目标] 原生生物是一类生物,占真核生物系统发育多样性的大部分,存在于地球的所有环境中,包括土壤、海洋和湖泊。在水生生态系统中,它们作为重要的初级生产者、初级消费者和分解者,在微生物循环中发挥着重要作用。此外,底栖和附生原生动物是鱼类和甲壳类动物的直接食物,因此对生态系统内的营养循环做出了巨大贡献。因此,了解原生生物群对于更深入地了解该环境中的整个生态系统至关重要。针对深海、南极洲和海洋等环境的原生动物生物群的详细分析已经有很多报道,但是对于涵盖陆地上所谓熟悉的普通环境(普遍环境)中的许多生物群的详细分析却知之甚少。霞浦湖是日本第二大海底湖,平均深度为4米,堪称普遍淡水环境的代表性湖泊之一。自 1976 年以来,日本国立环境研究所 (NIES) 一直在霞浦湖的 10 个点对水质和生物群落进行长期监测。然而,在其中两个地点,对原生动物生物群的调查仅限于使用光学显微镜进行的目视识别,尚未报告DNA水平的详细分析。此外,由于仅收集了地表水样本,对底栖原生动物和附生原生动物的研究不足。 在本研究中,除了在显微镜下进行形态观察外,我们还使用环境 DNA 分析来研究原生动物生物群,包括底栖生物和固着生物,目的是进一步增强对霞浦湖生态系统的了解的基础。 [方法] ○ 调查地点及抽样方法
我们分析了纯失相系统相关的多时间统计数据,这些统计数据反复用尖锐测量探测,并寻找其统计数据满足 Kolmogorov 一致性条件(可能达到有限阶)的测量协议。我们发现了量子失相过程的丰富现象学,可以用经典术语来解释。特别是,如果底层失相过程是马尔可夫过程,我们会发现在每个阶上都可以找到经典性的充分条件:这可以通过选择完全兼容或完全不兼容的失相和测量基础(即相互无偏基 (MUB))来实现。对于非马尔可夫过程,经典性只能在完全兼容的情况下证明,从而揭示了马尔可夫和非马尔可夫纯失相过程之间的一个关键区别。
Technical Parameters WSPS2 - VPD automation system: • Open cassette stations • Robotic system: Fully automatic wafer handling and processing • PAD-Fume: Etching of surface and bulk Si • PAD-Scan: scanning of liquefied wafer surface • Scan options: Bevel scan (for wafer edges) and Hydrophilic surface scan
简介:Richard Otis 博士于 2012 年获得材料科学与工程学士学位,并于 2016 年获得宾夕法尼亚州立大学材料科学与工程博士学位。2016 年,他加入了 NASA 喷气推进实验室,在那里从事软件工程和材料科学交叉领域的先进制造研究。Richard 是开源 PyCalphad 热力学软件的创建者和首席开发人员,该软件是 GitHub“十大”材料科学软件包,并在 2019 年 NASA 年度软件大赛中获得第二名。他的研究兴趣包括计算冶金学、基于 Calphad 的热力学和动力学、金属增材制造、贝叶斯统计和不确定性量化、科学软件工程和高性能数值计算。
抽象检索纳米级在纳米级的电阻图迅速通过无损的信号噪声比快速检查是一种未满足的需求,这可能会影响从生物医学到能量转化的各种应用。在这项研究中,我们开发了一种多模式功能成像仪器,其特征在于阻抗映射和相位定量,高空间分辨率和低时间噪声的双重能力。为了实现这一目标,我们推进了一个定量的相成像系统,称为Epi-Magnififer图像空间光谱显微镜结合了电动启动,以提供光路和电阻抗的互补图。我们用光路差和电阻抗变化的高分辨率图展示了我们的系统,这些图可以区分纳米化的,半透明的结构化涂层,涉及两种具有相对相似电性能的材料。我们绘制的异质界面对应于与钛(二氧化物)在玻璃支撑上沉积的钛(二氧化物)的过层中的直径较小的孔暴露的二锡氧化物层。我们表明,在宏观电极的相位成像期间的电气调制是决定性地检索具有亚微米空间分辨率的电阻抗分布,并且超出了基于电极的技术(表面或扫描技术)的局限性。发现,这些发现是通过理论模型证实的,该模型可以很好地拟合实验数据,从而可以通过高空间和时间分辨率实现电流图。新颖的光电化学方法的优点和局限性为测量本地电力场测量的更广泛的电气调制光学方法提供了基础。