过去,驾驶敞篷飞机的飞行员在执行飞行任务时几乎没有或根本没有环境保护措施,也没有保护系统来减轻环境压力。随着现代飞机、防护服和救生设备的出现,热应力(热或冷)似乎不再是现代飞行员的重大担忧。然而,当今航空业使用的防护系统和设备创造了新的环境,飞行员仍然面临热应力的挑战。例如,封闭式驾驶舱会因太阳辐射的温室效应而产生热应力。防护服 [抗荷服、核生化 (NBC) 装备] 增加了执行任务的难度,增加了热应力和脱水风险。机组人员或地勤人员与发动机产生和/或从停机坪或驾驶舱反射的热量距离过近也令人担忧。在飞行前、滑行或起飞待命期间工作(地勤人员)或户外等候(机组人员)时,周围环境本身会进一步加剧这种热应激。地勤人员和机组人员长时间处于热应激和脱水状态,会改变认知功能、延迟反应时间、增加错误率、降低体力、损害驾驶舱管理,并增加中暑或受伤的风险。虽然存在热缓解系统(空调、内置服装冷却系统),但它们的共同作用
值得注意的是,过去 50 年来,大多数飞机技术都处于停滞状态。例如,喷气发动机依赖于 20 世纪 30 年代末开发的燃气涡轮机;飞机结构已达到稳定和饱和的水平。然而,仪表系统和航空电子设备仍在取得重大进展,主要目标是减少飞行员的工作量,并将飞行安全性提高到非常高的水平。使用半导体 VLSI 技术的另一个优势是显著减小了设备的尺寸和重量。驾驶舱不再像传统的老式钟表式仪表;另一方面,它们现在看起来更像一个计算机工作站。本书强调介绍当代的发展,而不是过多地关注过时的系统。例如,姿态测量传统上使用机械陀螺仪进行,而现代飞机中机械陀螺仪现在几乎已被环形激光或光纤陀螺仪取代。我们介绍了使用激光陀螺仪和光纤陀螺仪的捷联式角度传感器的最新进展。同样,使用微处理器技术的大气数据计算机已经取代了老式的全气动传统指示器,如空速指示器、高度计、垂直速度指示器,这些指示器存在某些严重的局限性。
值得注意的是,过去 50 年来,大多数飞机技术都处于停滞状态。例如,喷气发动机依赖于 20 世纪 30 年代末开发的燃气涡轮机;飞机结构已达到稳定和饱和的水平。然而,仪表系统和航空电子设备仍在取得重大进展,主要目标是减少飞行员的工作量,并将飞行安全性提高到非常高的水平。使用半导体 VLSI 技术的另一个优势是显著减小了设备的尺寸和重量。驾驶舱不再像传统的老式钟表式仪表;另一方面,它们现在看起来更像一个计算机工作站。本书强调介绍当代的发展,而不是过多地关注过时的系统。例如,姿态测量传统上使用机械陀螺仪进行,而现代飞机中机械陀螺仪现在几乎已被环形激光或光纤陀螺仪取代。我们介绍了使用激光陀螺仪和光纤陀螺仪的捷联式角度传感器的最新进展。同样,使用微处理器技术的大气数据计算机已经取代了老式的全气动传统指示器,如空速指示器、高度计、垂直速度指示器,这些指示器存在某些严重的局限性。
值得注意的是,过去 50 年来,大多数飞机技术都处于停滞状态。例如,喷气发动机依赖于 20 世纪 30 年代末开发的燃气涡轮机;飞机结构已达到稳定和饱和的水平。然而,仪表系统和航空电子设备仍在取得重大进展,主要目标是减少飞行员的工作量,并将飞行安全性提高到非常高的水平。使用半导体 VLSI 技术的另一个优势是显著减小了设备的尺寸和重量。驾驶舱不再像传统的老式钟表式仪表;另一方面,它们现在看起来更像一个计算机工作站。本书强调介绍当代的发展,而不是过多地关注过时的系统。例如,姿态测量传统上使用机械陀螺仪进行,而现代飞机中机械陀螺仪现在几乎已被环形激光或光纤陀螺仪取代。我们介绍了使用激光陀螺仪和光纤陀螺仪的捷联式角度传感器的最新进展。同样,使用微处理器技术的大气数据计算机已经取代了老式的全气动传统指示器,如空速指示器、高度计、垂直速度指示器,这些指示器存在某些严重的局限性。
图 1:航空电子设备结构的简单分解,重点介绍选定的导航系统 航空电子设备(航空和电子相结合的术语)应用由于其运行环境而具有非常苛刻和严格的要求。飞机航空电子组件发生故障可能会立即危及生命。因此,必须密切监控和测量航空电子设备的各个方面,以发现安装和维修缺陷。 如图 1 所示,航空电子设备大致分为导航、通信、传感器、显示器和数据记录器等类别。除了电传电子控制飞行系统外,上述分类对大多数现代飞机(民用和军用)仍然有效。 本应用说明的重点是突出罗德与施瓦茨用于航空无线电导航信号的各种测试解决方案。此类信号包括甚高频全向无线电测距 (VOR)、仪表着陆系统 - 下滑道 (ILS-GS)、仪表着陆系统 - 定位器 (ILS-LOC) 和标记信标 (MB)。民用测距设备 (DME) 和军用战术空中导航 (TACAN) 已在应用说明 1GP74 中介绍,因此本文不再深入探讨。本文讨论了生成和分析测量解决方案;特别是,哪种解决方案最能满足不同航空客户的需求,无论是
值得注意的是,过去 50 年来,大多数飞机技术都处于停滞状态。例如,喷气发动机依赖于 20 世纪 30 年代末开发的燃气涡轮机;飞机结构已达到稳定和饱和的水平。然而,仪表系统和航空电子设备仍在取得重大进展,主要目标是减少飞行员的工作量,并将飞行安全性提高到非常高的水平。使用半导体 VLSI 技术的另一个优势是显著减小了设备的尺寸和重量。驾驶舱不再像传统的老式钟表式仪表;另一方面,它们现在看起来更像一个计算机工作站。本书强调介绍当代的发展,而不是过多地关注过时的系统。例如,姿态测量传统上使用机械陀螺仪进行,而现代飞机中机械陀螺仪现在几乎已被环形激光或光纤陀螺仪取代。我们介绍了使用激光陀螺仪和光纤陀螺仪的捷联式角度传感器的最新进展。同样,使用微处理器技术的大气数据计算机已经取代了老式的全气动传统指示器,如空速指示器、高度计、垂直速度指示器,这些指示器存在某些严重的局限性。
摘要 本文介绍了 Triton 联合航空电子安全测试平台,该测试平台支持测试真实飞机电子系统的安全漏洞。由于现代飞机是复杂的系统,因此 Triton 测试平台允许实例化多个系统进行分析,以便观察多个飞机系统的总体行为并确定它们对飞行安全的潜在影响。我们描述了两种激发 Triton 测试平台设计的攻击场景:ACARS 消息欺骗和飞机系统的软件更新过程。该测试平台允许我们分析这两种场景,以确定其预期操作中的对抗性干扰是否会造成危害。本文不描述真实飞机系统中的任何漏洞;相反,它描述了 Triton 测试平台的设计和我们使用它的经验。Triton 测试平台的主要功能之一是能够根据特定实验或分析任务的需要混合模拟、仿真和物理电子系统。物理系统可以与模拟组件或其软件在模拟器中运行的系统交互。为了便于快速重新配置,Triton 还完全通过软件重新配置:组件之间的所有接线都是虚拟的,无需物理接触组件即可进行更改。两所大学使用 Triton 测试平台的原型来评估飞机系统的安全性。
这台机器(图 1)看起来不太像现代飞机,但重要的是,它包含了实现三个轴受控飞行的所有元素。从此,人类开始了离开地球的努力,最初加入鸟类的行列,最终向遥远的太空进发。仅用了一个多世纪的时间,客运航天就成为可能。记录这一世纪的努力中所需要采取的各个步骤是很有启发的。以航空为例,飞机必须以越来越快的速度飞行到更远的距离和高度。先驱者们一路领先,乘客很快跟上。第一位乘客坐在莱特飞行器的机翼上,有趣的是,早期的客机噪音大、震动大、温度低而且非常昂贵。一开始,只有富人和特权阶层才能成为航空乘客。 1927 年,查尔斯·林德伯格 (Charles Lindbergh) 独自从纽约飞往巴黎,到 1944 年,任何有钱的人都可以乘坐 Constellation 等舒适的客机完成这一旅程(图 2)。第二次世界大战期间,喷气式发动机被发明,因此喷气式客机随后使所有人都可以进行长途空中旅行(尽管不再提供香槟和鱼子酱)。我们惊讶地注意到图 3 中的照片,其中奥维尔·莱特 (Orville Wright) 短暂地坐在驾驶座上
图 1:航空电子设备结构的简单分解,重点介绍选定的导航系统 航空电子设备(航空和电子相结合的术语)应用由于其运行环境而具有非常苛刻和严格的要求。飞机航空电子组件发生故障可能会立即危及生命。因此,必须密切监控和测量航空电子设备的各个方面,以发现安装和维修缺陷。 如图 1 所示,航空电子设备大致分为导航、通信、传感器、显示器和数据记录器等类别。除了电传电子控制飞行系统外,上述分类对大多数现代飞机(民用和军用)仍然有效。本应用说明的重点是重点介绍罗德与施瓦茨用于航空无线电导航信号的各种测试解决方案。此类信号包括甚高频全向无线电测距 (VOR)、仪表着陆系统 - 下滑道 (ILS-GS)、仪表着陆系统 - 定位器 (ILS-LOC) 和标记信标 (MB)。民用测距设备 (DME) 和军用战术空中导航 (TACAN) 已在应用说明 1GP74 中介绍,因此本文不再深入探讨。本文将讨论生成和分析测量解决方案;特别是哪种解决方案最能满足不同航空客户(无论是校准实验室、机场当局、生产还是研发)的需求。
图 1:航空电子设备结构的简单分解,重点介绍选定的导航系统 航空电子设备(航空和电子相结合的术语)应用由于其运行环境而具有非常苛刻和严格的要求。飞机航空电子组件发生故障可能会立即危及生命。因此,必须密切监控和测量航空电子设备的各个方面,以发现安装和维修缺陷。 如图 1 所示,航空电子设备大致分为导航、通信、传感器、显示器和数据记录器等类别。除了电传电子控制飞行系统外,上述分类对大多数现代飞机(民用和军用)仍然有效。本应用说明的重点是重点介绍罗德与施瓦茨用于航空无线电导航信号的各种测试解决方案。此类信号包括甚高频全向无线电测距 (VOR)、仪表着陆系统 - 下滑道 (ILS-GS)、仪表着陆系统 - 定位器 (ILS-LOC) 和标记信标 (MB)。民用测距设备 (DME) 和军用战术空中导航 (TACAN) 已在应用说明 1GP74 中介绍,因此本文不再深入探讨。本文将讨论生成和分析测量解决方案;特别是哪种解决方案最能满足不同航空客户(无论是校准实验室、机场当局、生产还是研发)的需求。