图 2. (a) 正在拉制的 LiPO 3 薄膜片的图像,宽度约为 10 厘米。图中的白色虚线突出显示了玻璃片的边缘。 (b) 用于对称电池的 45 微米薄膜的图像,角落中的小标尺显示总长度为 1 厘米。 (c) 拉制薄膜玻璃片的宽度横截面图,显示了可用区域和可回收的厚边缘部分。
未来 10 年将取得哪些进展?从第一台显微镜的开发开始,组织病理学就成为一门主要涉及视觉图像的学科。(请务必阅读本期的“黄金时代”。)诊断仍然依赖于对图像的解读,这些图像色彩绚丽,是我们在实验室工作的标志。随着计算机的日益复杂化,以及成像设备变得更易于操作、质量更好、价格更便宜(请参阅本期的“组织学和数字成像 - 现在和未来的技术”),为会议、肿瘤委员会或教学取出(并重新归档)玻璃片的日子可能已经过去了。玻璃片多久才会被放到博物馆的陈列柜里?
太阳能太阳能电池板也称为模块,它包含由硅制成的光伏电池,可将入射的阳光转化为电能。(“光伏”基本上是从光中产生的电能——photo = 光,voltaic = 电。)太阳能光伏电池由放置在薄玻璃片下的正极和负极硅膜制成。当阳光的光子照射到硅电池上时,电子会从薄膜中弹出。带负电的电子被吸引到硅电池的一侧,这会产生可以收集和引导的电压。太阳能光伏阵列是通过连接不同的太阳能电池板来收集电流而形成的。熔断阵列组合器是一个电气箱,其中终止了多串太阳能光伏阵列电缆;这取决于安装的大小
摘要:现代高通量纳米图案化技术(如纳米压印光刻技术)使得在大面积基底(cm 2 至 m 2 规模)上制造纳米结构阵列(尺寸为 10 至 100 纳米的特征)成为可能,例如硅晶片、玻璃片和柔性卷对卷网。制造这种大面积纳米结构阵列 (LNA) 的能力创造了广阔的设计空间,实现了广泛的应用,包括光学设备(例如线栅偏振器、透明导体、彩色滤光片和抗反射表面)以及电子元件的构建块(例如超级电容器、传感器和存储器架构)。然而,现有的计量方法将难以与制造方法一起扩展。例如,扫描电子显微镜 (SEM) 和原子力显微镜 (AFM) 具有微米级视场 (FOV),这妨碍了对以每分钟平方米的速度制造的 LNA 进行全面特性分析。散射测量方法具有更大的 FOV(通常为几百微米到几毫米),但传统散射测量系统一次只测量一个点的样品,这也使得它们对于大规模 LNA 制造来说太慢。在这项工作中,我们展示了使用高光谱成像对传统光谱散射测量方法进行并行化,将该技术的吞吐量提高了 106-107 倍。我们通过使用高光谱成像和反射光谱的逆向建模来展示这种方法,以微米级空间分辨率获得毫米和厘米级 Si 纳米柱阵列结构的三维几何数据。这项工作表明,可以对各种 LNA 进行几何测量,并有可能在大面积上实现高速测量,这对于未来的 LNA 制造至关重要。