肠球菌是肠球菌的成员,由于其潜在的致病性和抗生素耐药性,在水产养殖方面已成为一个重要的关注。这项研究旨在研究从公共鲤鱼(Cyprinus parpio)和罗非鱼(Oreochromis niloticus)中分离出的六种不同的肠球菌物种的分子诊断和表征,并评估了它们的遗传多样性,抗生素抗性谱谱以及潜在的毒素性因子。在分离株中,有65.3%的普通鲤鱼和60.8%的罗非鱼被鉴定为粪肠球菌。所有六个物种都证明了代谢各种碳水化合物的能力,表明代谢能力广泛。某些物种在特定碳水化合物的利用中显示出可变性。例如,粪肠球菌和粪肠球菌具有独特发酵的adonitol,而E. avium和E. hirae是唯一能够发酵D-弧菌醇的人。此外,在粪肠球菌中仅观察到voges-proskauer阳性。在生长条件下,除了粪肠球菌外,所有物种在4°C和45°C的繁殖中都繁殖,而大肠球菌未能在10°C下生长。E.粪便和E.粪便在pH 9.6生长良好。 溶血测试揭示了该物种之间的差异:粪肠球菌显示β-溶解性,而Gallinarum大肠杆菌表现出α-溶解。 仅在gallinarum大肠杆菌中观察到运动,而Esculin水解是粪肠球菌独有的。 环境适应性在物种之间有所不同。 E.鸟在6.5%NaCl中的生长有限,一些物种在0.1%甲基蓝牛奶中几乎没有生长。E.粪便和E.粪便在pH 9.6生长良好。溶血测试揭示了该物种之间的差异:粪肠球菌显示β-溶解性,而Gallinarum大肠杆菌表现出α-溶解。仅在gallinarum大肠杆菌中观察到运动,而Esculin水解是粪肠球菌独有的。环境适应性在物种之间有所不同。E.鸟在6.5%NaCl中的生长有限,一些物种在0.1%甲基蓝牛奶中几乎没有生长。粪肠球菌和大肠杆菌在60°C下显示生存15分钟,粪肠球菌在30分钟时显示出有限的生存率,使它们与其他物种区分开。从巴斯拉市当地养鱼场收集的cyprinus腕牛和尼洛菌分离的菌株被证实为16S rRNA基因测序的粪肠球大肠杆菌。使用特定引物的PCR研究将所有分离株鉴定为粪肠球菌。
癌症是威胁人类健康的主要疾病之一,由于各种因素,预计未来几十年癌症的发病率将会增加,因此迫切需要开发新的抗癌药物。正在进行的实验和临床观察表明,具有干细胞样特性的癌细胞 (CSC) 参与了肺癌化学耐药性的形成。由于肿瘤生长和转移可由肿瘤相关基质细胞控制,本研究的主要目标是评估从 Sphaerococcus coronopifolius 红藻中分离出的五种溴萜烯对成纤维细胞和肺恶性细胞共培养系统中的 CSC 的抗肿瘤潜力。在几种恶性和非恶性细胞系 (HBF、BEAS-2B、RenG2、SC-DRenG2) 的单一培养物上评估了化合物 (10-500 μM;72 小时) 的细胞毒性,并通过 MTT 测定估计了其效果。实施了非恶性人类支气管成纤维细胞 (HBF) 和恶性人类支气管上皮细胞 (RenG2) 的共培养,并通过球体形成试验评估了化合物选择性杀死 CSC 的能力。还测定了白细胞介素-6 (IL-6) 水平,因为细胞因子对 CSC 至关重要。关于单一培养结果,溴球醇选择性地消除了恶性细胞。12 S-羟基溴球醇和 12 R-羟基溴球醇立体异构体对非恶性支气管 BEAS-2B 细胞系均有细胞毒性,IC 50 分别为 4.29 和 4.30 μM。然而,没有一种立体异构体会对 HBF 造成损害。至于共培养,12 R -羟基溴球醇显示出最高的细胞毒性和消除恶性干细胞的能力;然而,其效果与 IL-6 无关。这里呈现的结果首次证明了这些溴萜烯具有消除 CSC 的潜力,从而开辟了新的研究机会。12 R -羟基溴球醇被证明是最有希望在更复杂的活体模型中进行测试的化合物。
1坎皮纳斯大学食品工程学院食品科学与营养系,坎皮纳斯大学13083-862,SP,巴西; beatriz.paschoalini@unesp.br(B.R.P.); karen_vmn@hotmail.com(k.v.m.n。); julianatakahashimaffei@gmail.com(J.T.M.)2动物生产和预防兽医学系,兽医学院,动物科学学院,萨克州立大学,巴西SP,SP,BOTUCATU,BOTUCATU,18618-681; helio.langoni@unesp.br(H.L.); felipefreitasguimaraes@hotmail.com(F.F.G。)3兽医医学与动物科学学院,哥伊联邦大学,校园路,GOI-NIA 74690-900,巴西GO; claricegebara@ufg.br(C.G。); natyllane@hotmail.com(N.E.F.)4兽医医学与动物科学学院动物营养与生产系,萨尔·保罗大学(USP),pirassununga 13635-900,SP,巴西; mveiga@usp.br(M.V.D.S.); filis1999@hotmail.com(c.e.f.)5农业科学中心,圣卡塔琳娜州大学,巴西SC 88520-000; roberto_kappes2.8@hotmail.com 6坎普纳·格兰德(Campina Grande)联邦坎皮纳·格兰德(Campina Grande)的农业食品科学技术中心,巴西PB 58840-000; mnygoncalves@gmail.com *通信:ncirone@unicamp.br;电话。: +55-19-3251-4012
革兰氏阳性菌屎肠球菌正日益成为医院内获得性抗生素耐药性感染的病因。屎肠球菌生物学研究的一个基本部分依赖于生成靶向突变体的能力,但这一过程目前劳动密集且耗时,每个突变体需要 4 到 5 周。在本报告中,我们描述了一种依赖于屎肠球菌的高重组率的方法,以及应用成簇规律间隔短回文重复序列 (CRISPR)-Cas9 基因组编辑工具来更有效地在屎肠球菌染色体中生成靶向突变体。使用此工具和多重耐药临床屎肠球菌菌株 E745,我们在 lacL 基因中生成了一个缺失突变体,该基因编码屎肠球菌 β-半乳糖苷酶的大亚基。使用 5-溴-4-氯-3-吲哚基-β-D-半乳糖苷 (X-gal) 进行蓝白斑筛选可用于区分野生型和 lacL 缺失突变体。我们还将两个 gfp 拷贝插入到内在屎肠球菌大环内酯类抗性基因 msrC 中,以产生稳定的绿色荧光细胞。我们得出结论,CRISPR-Cas9 可用于在 3 周内对屎肠球菌进行有针对性的基因组修饰,且动手时间有限。这种方法可能适用于其他具有高内在重组率的革兰氏阳性菌。
标题:RECT重组酶表达能够在肠球菌作者Victor Chen 1,Matthew G. G. G. G. G. G. G. G. G. G. G. G. G. Hang 1,2*隶属关系1化学生物学和微生物发病的实验室,纽约大学,纽约,纽约10065。2个免疫学和微生物学和化学部门,Scripps Research,La Jolla,加利福尼亚州92037,美国。*通信:hhang@scripps.edu摘要肠球菌是一种普遍存在的革兰氏阳性细菌,已从哺乳动物的环境,食物和微生物群中回收。粪肠球大肠杆菌的共生菌株可以对宿主生理和免疫产生有益的影响,但抗生素使用量可从牲畜和人类中提供抗生素耐药性和致病性分离株。然而,粪肠球菌功能和机制的解剖受到了效率低下的基因编辑方法的限制。为了解决这些局限性,我们在这里报告了粪肠球菌的表达重点酶的表达,显着提高了粪肠球菌和其他肠球菌种类(例如杜兰大肠杆菌)和Hirae等肠球菌和其他肠球菌中的重组技术的效率。值得注意的是,我们证明了E.粪便的表达表达促进了编码抗生素可选标记的单链和双链DNA模板的染色体插入。此外,RECT的表达与簇的定期间隔的plindromic重复(CRISPR)-CAS9和引导RNA(GRNA)相结合,使高效的Scar-Lise SSDNA重新组合可以在E.粪eC中产生特定的基因编辑突变体。此处描述的矩形介导的重组方法应显着增强粪肠球大肠杆菌和其他密切相关的物种的遗传研究,以进行功能和机械研究。重要性肠球菌被广泛认为是新兴的公共卫生威胁,耐药性和医生感染的兴起。然而,共生肠球菌菌株在哺乳动物中具有有益的健康功能,可以上调宿主免疫并预防微生物感染。这种肠球菌物种的功能性二分法强调了深入研究的必要性,以发现和表征强调其多种活性的遗传成分。但是,粪肠球菌中的基因工程仍需要被动同源重组,这通常需要克隆多个同源片段和筛选。为了减轻这些挑战,我们发现直接成型酶使诱变DNA模板更有效地整合能够产生粪便中基因组DNA的插入,缺失和取代。这些改进的重新组合方法应促进肠球菌的功能和机理研究。
摘要 屎肠球菌是一种普遍存在的革兰氏阳性细菌,可从环境、食物和哺乳动物的微生物群中分离得到。屎肠球菌的共生菌株可对宿主的生理和免疫产生有益影响,但抗生素的使用已从牲畜和人类中产生了抗生素耐药性和致病性分离株。然而,由于基因编辑方法效率低下,对屎肠球菌功能和机制的解析受到限制。为了解决这些限制,我们在此报告,屎肠球菌 RecT 重组酶的表达可显著提高重组工程技术在屎肠球菌的共生菌株和抗生素耐药菌株以及其他肠球菌种(如 E. durans 和 E. hirae)中的效率。值得注意的是,RecT 与成簇的规律间隔短回文重复序列 (CRISPR)-Cas9 和向导 RNA (gRNA) 的结合表达能够实现高效的无瘢痕单链 DNA 重组,从而在屎肠球菌中产生特定的基因编辑突变体。此外,我们证明屎肠球菌 RecT 表达促进了编码抗生素选择标记的双链 DNA 模板的染色体插入,从而产生了基因缺失突变体。作为进一步的原理证明,我们使用 CRISPR-Cas9 介导的重组敲除屎肠球菌中的两个分选酶 A 基因,以进行下游功能表征。此处描述的通用 RecT 介导的重组方法应能显著增强对屎肠球菌和其他密切相关物种的遗传研究,以进行功能和机制研究。
肠球菌包含一组乳酸菌(LAB),具有巨大的用作食品发酵微生物的潜力。不幸的是,由于发生致病性和多药抗性菌株,肠球菌受到了很多负重的关注。在这项研究中,我们使用基因组学来选择44个研究的肠球菌分离株中的安全糖果。 对四十四菌株的基因组进行了充分测序,并评估了毒力和抗生素耐药基因的存在。 属于乳酸肠肠球菌,肠球菌,杜兰肠球菌和泰国肠球菌的19个分离株被认为免受基因组分析的安全性。 评估的二级代谢产物基因簇评估了细菌素的存在,并发现十二个候选物可以分泌抗微生物化合物,可有效针对从奶酪和金黄色葡萄球菌分离出的listeria monocytogenes。 生理表征显示,在dustrial潜力中有19个;所有菌株在42°C时生长良好,酸化1.5小时的速度比乳腺乳酸乳酸菌乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳突乳酸乳杆菌(Lactococcoccus)乳注。 我们得出的结论是,所检查的肠球菌中有很大一部分是安全的,并且可以用作具有固有生物保护能力的优秀食品发酵微生物。在这项研究中,我们使用基因组学来选择44个研究的肠球菌分离株中的安全糖果。对四十四菌株的基因组进行了充分测序,并评估了毒力和抗生素耐药基因的存在。属于乳酸肠肠球菌,肠球菌,杜兰肠球菌和泰国肠球菌的19个分离株被认为免受基因组分析的安全性。的二级代谢产物基因簇评估了细菌素的存在,并发现十二个候选物可以分泌抗微生物化合物,可有效针对从奶酪和金黄色葡萄球菌分离出的listeria monocytogenes。生理表征显示,在dustrial潜力中有19个;所有菌株在42°C时生长良好,酸化1.5小时的速度比乳腺乳酸乳酸菌乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳突乳酸乳杆菌(Lactococcoccus)乳注。我们得出的结论是,所检查的肠球菌中有很大一部分是安全的,并且可以用作具有固有生物保护能力的优秀食品发酵微生物。
对食源性病原体中抗生素耐药性的日益关注需要对各种食品中其患病率和相关风险进行综合评估。本研究旨在评估肠球菌属的发生。在三位一体地区的各个销售点购买的鱼类样品中。产品的选择(n = 74)是基于它们的可用性,包括在波罗的海地区捕获的鱼类和从越南,中国,挪威和欧盟(EU)国家进口的产品。进行细菌分离,将样品接种到选择性肉汤中,并根据浊度评估肠球菌的生长。阳性培养物通过溴氯丙酚紫色汤的颜色变化得到证实,并在Slanetz-Bartley琼脂上分离出来。细菌都存在于所有测试的样品中,无论原材料处理程度如下:冷冻(F) - 55% - 新鲜/原始/原始/原始(FS) - 70.6% - 70.6%,解冻(DF) - 30% - 烟熏(s) - 50% - 50%,包装方法,包装方法,修饰的氛围(MAP)包装(MAP) - UP SBUR -SBUL BUL BULE,单位,单位 - 75% - (75%) - (75%) - () - (75%) - () - (75%) - () - () - (75%) - () 76.9%,总频率为58.1%。细菌的数量从未检测到的细菌数量到4.28-LOG CFU/g,融化鱼的平均值最低,被填充的鱼的平均值最低。对从样品分离的24种菌株进行的测试表明它们对四环素的敏感性各异。 还观察到了测试菌株的多药耐药性的。 基于起源,处理程度或包装的肠球菌计数,进行的统计分析在统计上没有显示出统计学上的差异(p <0.05)。表明它们对四环素的敏感性各异。。基于起源,处理程度或包装的肠球菌计数,进行的统计分析在统计上没有显示出统计学上的差异(p <0.05)。此外,观察到菌株敏感性的差异。检测到的抗性病例,尤其是对四环素,需要仔细的监测和行动,以限制与食品中抗性细菌菌株相关的健康风险。
摘要简介:肺炎链球菌是肺炎和急性中耳炎(AOM)的病因,以及脑膜炎和菌血症等侵袭性疾病。PCV15(V114)是一种新的15个价值肺炎球菌结合疫苗(PCV),批准用于≥6周龄的个体,以预防肺炎,AOM和侵袭性肺炎球菌病。涵盖的领域:本评论总结了V114第三阶段的开发计划,从而导致婴儿和儿童的批准,包括关键研究,互换性和追赶疫苗接种研究以及对高危人群的研究。除了免疫原性和V114与其他常规儿科疫苗的使用外,还提出了综合的安全摘要。专家意见:在整个开发计划中,V114展示了一种安全性,该安全性与婴儿和儿童的PCV13相比。除血清型3以外的所有共享血清型,V114的免疫原性与PCV13相当,其中V114表现出优异的免疫原性。较高的免疫反应。正在进行的研究的结果是评估V114针对疫苗型肺炎球菌AOM和预期的现实世界证据研究的功效,将支持评估疫苗有效性和影响的评估,还有一个额外的问题,即较高的血清型3免疫原性是否会改善针对血清型3肺炎球菌疾病的更好保护。
Acinetobacter Baumannii, Staphylococcus capnocytophaga Haemolytica, Pseudomonas fluorescens, Staphylococcus horses, Actinomyces Israelii, Staphylococcus Epidermidis, Capnocytophaga Ochracea, Pseudomonas Mosselii, Streptobacillus moniliformis, Bordetella tunnels,葡萄球菌血液溶血,囊孢子虫,pseudomonas putida,链球菌,Gallolyticus,Burkholderia cepacia,葡萄球菌,弯曲球菌,弯曲球菌Ococcus沙门氏菌肠道SSP。 div>Acinetobacter Baumannii, Staphylococcus capnocytophaga Haemolytica, Pseudomonas fluorescens, Staphylococcus horses, Actinomyces Israelii, Staphylococcus Epidermidis, Capnocytophaga Ochracea, Pseudomonas Mosselii, Streptobacillus moniliformis, Bordetella tunnels,葡萄球菌血液溶血,囊孢子虫,pseudomonas putida,链球菌,Gallolyticus,Burkholderia cepacia,葡萄球菌,弯曲球菌,弯曲球菌Ococcus沙门氏菌肠道SSP。 div>