该论文报告了一项实验研究的结果,该研究旨在比较全尺度废水处理厂(WWTP)的两种配置:常规的活性污泥(CAS)和毒素 - 塞林 - 厌氧过程(OSA)与间歇性充气(IA)。进行了全面的监测活动,以评估多个参数,以比较这两种配置:碳和营养素去除,温室气体排放,呼吸测定分析和污泥的产生。在比较两种构型时,在研究中采用了一种整体方法,包括包括碳足迹(CF)贡献(CF)贡献(作为直接,间接和导数排放)。结果表明,OSA-IA构型在总化学氧需求(TCOD)和正磷酸(PO 4 -P)中的表现更好。CAS对于总SUS式固体(TSS)的去除情况表现更好,显示OSA-IA的沉降特性恶化。异养的产量系数和最大生长速率降低,这表明OSA-IA构型中污泥还原代谢的转变。自养生物量显示出由于OSA-IA构型中污泥储罐对硝化作用的负面影响而导致的产量系数和最大生长产量降低。由于额外的
过去 20 年来,人们一直非常关注从生活污水中去除营养物,尤其是氮和磷。在昆士兰州,污水处理厂 (STP)(定义为环境相关活动 (ERA) 63)通常需要达到 5 mg/L 总氮和 1 mg/L 总磷的年中位浓度,才能获准排放到水中。随着人口的增加,即使排放浓度保持不变,排放量和营养负荷也可能会增加。增加的营养负荷将增加昆士兰水域的总集水负荷,并可能导致环境恶化。废水再利用/回收和替代处置解决方案(例如排放到陆地)可以减少排放到水生环境中的营养负荷。然而,在城市环境中,这两种选择目前似乎都受到严重限制。通过处理增加营养物去除也受到现有技术、资本和运营成本的限制。
摘要。工业废水处理厂 (WWTP) 中的活性污泥的使用会产生污泥饼形式的副产品。污泥饼给环境带来了新的问题,因为它的堆积会导致土地变得贫瘠、破坏美观、增加微生物活性并污染水和土壤,这可能对人类和环境有害。PT X 是每天产生 80 公斤污泥饼的行业之一。根据实验室结果,X WWTP 污泥饼具有用作有机肥料的潜力。然而,将污泥饼用作有机肥料不符合肥料质量标准,也不能为植物提供最佳效果。众所周知,山羊粪便可以增加污泥饼中的有机肥料含量,符合肥料质量标准。本研究旨在寻找在污水处理厂污泥饼中添加山羊粪便的最佳配方,采用四种处理方式,即未经处理的污泥饼和添加 1.4 kg、2.1 kg 和 2.8 kg 山羊粪便。研究阶段包括原材料的准备、有机肥的生产和有机肥含量的测试。结果表明,堆肥结束时有机肥的物理和化学参数有所增加,即 pH 值(6.6)、C(22.14%)、N(3.55%)、P(4.65%)、K(0.45%)、Ca(0.52%)和 Mg(0.26)),同时含水量降低(15.40%)。在 X TWP 污泥饼中添加山羊粪便和其他添加剂组合可以满足有机肥质量标准。添加 2.1 kg 山羊粪便是增加有机肥的最佳配方。
自1950年以来,全球塑料产量一直在稳步增长,2019年达到3.68亿吨(Okoffo等人,2019年)。这种陡峭的上升可以归因于塑料的吸引人特性,例如其低价,耐用性,轻巧和良好的延展性,这导致了其在家庭和工业应用中的普遍性(Kawecki等人(Kawecki等),2018年)。在2004年,汤普森(Thompson)正式引入了“微塑料”一词(MP),提高了人们对海洋中塑料存在日益增加的认识(Thompson等人,2004)。这个问题在科学家,当局,公众和媒体中已变得尤为重要(Provencher,2018年)。在全球范围内,关于瓶装水,自来水,废水和淡水中微塑料的几项研究(Singh等人,2022)。因此,微型塑料的尺寸很小会进入食物链并对人类和生物产生负面影响(Yan等人。,2019年)。虽然有一项关于自来水中微塑料的伊拉克研究(Sultan等人,2023)。除了塑料污染的总体影响外,人们对塑料污染对生态系统健康的影响越来越担心。结果,塑料已添加到
摘要:合成化学表面活性剂(SCSS)是从化石燃料前体合成的一组用途的两亲性化学物质量,这些化石燃料前体已在各种工业应用中发现使用。它们的全球用法估计每年超过1500万吨,这导致环境破坏和对人类和其他生物的潜在毒理学影响均未减弱。当前的社会挑战以确保环境保护并减少对有限资源的依赖,导致人们对可持续和环保替代品(例如生物性活性剂)的需求增加,以取代这些有毒的污染物。生物表面活性剂是可生物降解,无毒的,并且通常在环境上兼容的两亲性化合物。尽管微生物生物表面活性剂替换SCSS的潜力巨大,但与SCS相比,限制其商业化的主要挑战限制其商业化的收益率和生产成本的大量成本。在这篇综述中,我们讨论了SCSS的释放,废水处理厂(WWTPS)是其释放到海洋的主要点来源,然后我们深入研究了这些污染物对海洋生物体和人类的后果。然后,我们探索微生物生物表面活性剂作为SCSS的替代品,重点是鼠尾草脂质,并以对当前和未来的工作进行商业化微生物生物性生物性侵蚀剂的一些观点结束。
人为引起的营养富集水体富集了过多的氮(N)和磷(P)是美国面临的最普遍的环境问题之一(美国EPA,2015a)。在许多分水岭,市政和工业废水处理厂(WWTPS)可以是营养的主要来源。最新的努力来得出数字营养标准来保护水体的指定用途,这导致了限制,对于美国大多数WWTP而言,使用目前进行的治疗配置可能会遇到挑战。但是,许多利益相关者都担心与升级治疗配置有关的不良环境和经济影响可能存在明显的不良环境和经济影响,因为这些配置可能需要更多地使用化学品和能量,释放更多的温室气体,并产生更多的处理残留物来处置。
“利用人工智能实现污水处理厂运营先进支持技术示范项目”与其他三方:广岛市、船桥市和NJS株式会社共同开展。广岛市和船桥市担心将污水设施运营技能传承给下一代。NJS株式会社是一家推动基于人工智能的新技术传播的咨询公司。四方为该项目组成了一个联合研究小组。该示范项目由国土交通省国土交通省国家土地和基础设施管理研究所(NILIM)委托,作为2021年污水高科技动态方法突破项目(“B-DASH项目”)的全面示范。关于示范项目,本文介绍了我们用于污水处理厂运营的人工智能技术概念和一些项目成果。
摘要:考虑到令人担忧的水资源短缺问题,必须采用更高效的废水处理技术。废水可以通过传统的生物过程处理,去除病原体、颗粒和可溶性有机化合物以及其他成分。然而,处理厂的二级废水可能仍然含有有毒元素或高浓度的无机营养物(主要是氮和磷),这使得光合微生物在水体中生长,导致水体富营养化。在这种情况下,在污水处理产生的二级废水中培养光合微生物可以去除这些废水中的营养物,降低水体富营养化的可能性。此外,在这种三级废水处理中产生的微藻生物质可以通过不同的方法收获,并有可能用于不同的应用,例如肥料和生物燃料。
摘要:本文提出了一种线性参数变化 (LPV) 框架中的经济模型预测控制 (EMPC) 策略,用于控制污水处理厂 (WWTP) 曝气反应器中的溶解氧浓度。复杂非线性工厂的简化模型以准线性参数变化 (qLPV) 形式表示,以减少计算负担,实现实时操作。为了便于制定作为系统状态函数的时变参数以及用于反馈控制目的,提出了一种使用 qLPV WWTP 模型的移动范围估计器 (MHE)。基于 ASM1 模拟基准对控制策略进行了研究和评估,以进行性能评估。将 EMPC 策略应用于西班牙赫罗纳 WWTP 曝气系统的控制,所获得的结果证明了其有效性。
不再能满足要求。问题是:这三座分别建于 20 世纪 70 年代和 80 年代的工厂是否应该进行翻新,还是应该将它们的产能合并为一座新的上恩嘎丁区域污水处理厂?虽然新工厂的投资成本 7,460 万欧元高于扩建现有的三座 WWTP(5,070 万欧元),但预计的运营成本明显较低——每年 180 万欧元对 250 万欧元。假设运营 45 年,这将节省大量成本。新的上恩嘎丁 WWTP 建在旧的 Furnatsch WWTP 旧址上,设计容量为 90,000 人口当量 (PE)。这使得它比 Staz、Sax 和 Furnatsch WWTP 小得多,后三座 WWTP 的总容量为 114,000 PE。这是通过 2009 年建成的从萨梅丹到 S-chanf 的主要收集渠道、将大气降水(雨水、融水)与污染废水持续分离、以及在圣诞节前后旅游旺季优化的工艺工程实现的。