本文概述了新兴的美国政治经济学 (APE) 领域。该领域在方法论上不拘一格,力求了解市场与政府在美国不平等和两极分化政体中的相互作用。尽管 APE 属于美国政治研究,但它借鉴了比较政治经济学,发展出了一种广泛的方法,在两个主要方面与美国政治主流不同。首先,APE 关注市场与治理的相互作用,而这在美国政治研究中是一个边缘问题。其次,它引发了一种理论取向,关注我们所谓的元政治——制度塑造、议程设置和场地选择的过程,这些过程在美国政治研究中占据核心地位的更明显的大众政治过程之前和同时展开。这些实质性和理论上的差异将美国政治研究扩展到被忽视但至关重要的领域,为美国独特的资本主义和民主组合提供了新的见解。
六角硼硝酸盐(H-BN)由于其令人难以置信的电气,热和机械性能而近期引起了很多关注。其化学成分导致其化学惰性和无毒性,这使其与石墨材料不同(1)。过去,H-BN由于其摩擦学特性,即摩擦,润滑,表面相互作用。例如,这些特性已被理论上有效为航天器上的涂层,因为其在高温下保持其结构的能力(2,3)。对H-BN的分析较小,因为六角硼氮化硼纳米片(BNNS)也很感兴趣。正如已经发现石墨材料具有广泛的应用程序一样,BNN也是如此。bnns可以用作癌症药物递送的一种方法,因为它比基于石墨烯的材料更具生物相容性和毒性,但保留了许多相同的特性(4)。还发现了在量子信息中使用H-BN的动机,将量子通信科学用作“单光子发射器”(5)。我们对H-BN的特定兴趣源于其在高温下用作紫外光探测器的理论上的使用(6)。
摘要:量子计算可以在未来实现研究和工业领域的各种突破。尽管已经存在的一些量子算法与最著名的经典算法相比具有理论上的加速,但这些算法的实现和执行仍面临一些挑战。例如,输入数据决定了量子算法所需的量子比特和门的数量。算法实现还取决于所使用的软件开发工具包,这限制了可用的量子计算机集。由于当前量子计算机的功能有限,选择合适的量子计算机来执行给定输入的某种实现是一项艰巨的挑战,需要对所实现的量子算法有丰富的数学知识以及对所用软件开发工具包的技术知识。因此,我们提出了一个路线图,用于自动分析和选择某种量子算法的实现以及可以使用给定输入数据执行所选实现的合适量子计算机。
大型语言模型彻底改变了人工智能和机器学习。在大规模数据集上训练的这些模型可以生成类似人类的文本,代码,并且(显然)从事复杂的推理任务。这些突破的核心是所谓的经验缩放定律,它显示了模型能力如何随着模型大小和数据大小的增加而预测的。这种可预测性激发了巨大的工业努力来建立和部署非常大型的模型。该课程将通过对Llama 3技术报告的深入研究(Grattafiori等,2024)的深入研究来理解大型模型培训的实际方面。我们将介绍从培训前和培训后的整个管道到评估和部署。学生将有望介绍一篇论文,准备代码笔记本,并完成有关他们选择的主题的Finnal项目。虽然读数在很大程度上是应用或方法论上的,但理论上的学生欢迎将他们的项目集中在与大型模型有关的理论主题上。
•理论上的社会政策方法,12h/ 1.5 ect,秋冬学期2023•环境,气候变化和人类流动性,12h/ 1.5 ECT,秋季/ 1.5 ECT,2019年秋季/冬季,2019年,2020年,2021年•2021年•Annabel Beckman女士的主管,Annabel Beckman女士,“对跨境的跨境保护群体,以造成的跨境保护,由越来越多的宾客造成的群体临近宾夕法尼亚州的跨境,这是202-4治理:气候变化与移民”(哥伦比亚大学国际与公共事务学院),2023年3月29日,嘉宾讲师,硕士课程,“欧洲移民和空间不平等的政治经济学”(安吉洛·马特利(Angelo Martelli)博士和Matilde Rosina博士)海伦·亚当斯(Helen Adams)),伦敦国王学院(KCL)综合研究中心,2020年11月26日,讲师,硕士“合作国际合作,:Christel Cournil),巴黎大学13
最近实验和理论工作都表明,光学上可寻址的分子旋转可能具有巨大的量子信息处理潜力。诸如旋转量子量初始化,相干控制和读数之类的实验作品表明,旋转分子可以是量子计算的绝佳候选者。在高温下分子自由基上的时间分辨电子自旋共振表明分子旋转可能是高温量子门操作的基石,因此克服了维持量子电路的低温技术障碍。在此程序中,我们讨论了分子材料的潜力,尤其是二维分子网络,用于光学驱动的量子信息处理,并结合纳米光器设备。尽管这只是一个理论上的建议,但我们希望这可以鼓舞量子计算的未来发展。显然,前进的路上有许多困难,例如分子中的单个自旋读数,分子网络的最佳设计和相应的光学仪器,将来可以解决。
关于致命系统的自主性的定义。评估致命系统的“自主性”可能很难编纂或定义。此外,应该认识到自主性不是一种二元技术;许多现有系统包含不需要人机交互的功能 - 例如飞机上空气动力学控制面的操作。考虑致命武力应用中的关键功能及其如何应用于理论上的 LAWS 有助于取得进展,而不会因对自主性的不同解释而停滞不前。首先,英国认为有几个关键功能 - 其中最主要的是选择和打击目标。其次,英国认为,武器系统是否可以按照国际人道主义法 (IHL) 使用的关键考虑因素是人类对这些关键功能的控制水平、方法和性质。英国认为,只有人类才能评估和应用国际人道法原则以及评估打击隐含风险的要求。我们希望,对有效人类控制的关注能为思考哪些特征是可接受的,哪些是不可接受的提供机会。
在量子物理学领域,对自然基本力的探索是一项持续不断、不断发展的事业。虽然传统电磁波长期以来一直是现代物理学的基石,但标量波的出现开辟了新的探索途径。标量波是量子物理学中相对较新的发展,因其有可能彻底改变我们对能量、信息和宇宙本身结构的理解而备受关注。在本文中,我们将深入研究标量波的迷人世界,探索其背后的科学及其对量子物理学未来的影响。标量波可用于环境目的,例如水净化和土壤修复。将标量信息传输到目标特定物质或污染物的能力可能会改变环境保护。虽然标量波的概念前景广阔,但它也面临着相当多的怀疑和挑战。一些批评者认为,标量波仍然主要是理论上的,尚未显示出实际效用。
关于致命系统的自主性的定义。评估致命系统的“自主性”可能很难编纂或定义。此外,应该认识到自主性不是一种二元技术;许多现有系统包含不需要人机交互的功能 - 例如飞机上空气动力学控制面的操作。考虑致命武力应用中的关键功能及其如何应用于理论上的 LAWS 有助于取得进展,而不会因对自主性的不同解释而停滞不前。首先,英国认为有几个关键功能 - 其中最主要的是选择和打击目标。其次,英国认为,武器系统是否可以按照国际人道主义法 (IHL) 使用的关键考虑因素是人类对这些关键功能的控制水平、方法和性质。英国认为,只有人类才能评估和应用国际人道法原则以及评估打击隐含风险的要求。我们希望,对有效人类控制的关注能为思考哪些特征是可接受的,哪些是不可接受的提供机会。
尽管量子神经网络(QNN)最近在解决简单的机器学习任务方面显示出令人鼓舞的结果,但二进制模式分类中QNN的行为仍未得到充实。在这项工作中,我们发现QNN在二元模式分类中具有致命的脚跟。为了说明这一点,我们通过介绍和分析嵌入具有完全纠缠的QNN家族的新形式的对称性形式,从而对QNN的性质提供了理论上的见解,我们将其称为否定性。由于否定对称性,QNN无法区分量子二进制信号及其负面信号。我们使用Google的量子计算框架在二进制模式策略任务中经验评估QNN的负对称性。理论和实验结果都表明,否定对称性是QNN的基本特性,经典模型并非共享。我们的发现还暗示否定对称性是实用量子应用中的双刃剑。