FIM 系拥有国际公认的理论和计算凝聚态物理学科学家。每个研究小组在材料理论研究的专业领域都拥有独特的全球专业知识。正在进行的研究活动是与意大利、欧洲和世界各地的多个研究和计算中心合作开展的,包括斯坦福大学、普林斯顿大学、亚利桑那州立大学、保罗·德鲁德研究所 (柏林)。许多研究活动还与摩德纳的纳米科学研究所 CNR-NA-NO (www.nano.cnr.it) 密切合作开展。就业
伊朗德黑兰Tandis医院泌尿外科系的泌尿外科介绍了与量子力学的基础知识兼容的一般物理信息信息的一般概念,并将香农熵作为特例。这种物理信息的概念导致了二进制数据矩阵模型(BDM),该模型预测了量子力学,一般相对论和黑洞热力学的基本结果。研究了模型与全息,信息保护和Landauer原则的兼容性。由于BDM得出了“位信息原理”后,得出了普朗克,de Broglie,Bekenstein和质量能量等价的基本方程。k eywords信息的物理理论,二进制数据矩阵模型,香农信息理论,位信息原理1。构造信息意味着一系列不可衡量的概念或可测量数量的数据。物理学中可测量信息的通常概念调用了香农熵和信息的主题。克劳德·香农(Claude Shannon)在他的开创性论文[1]中发展了信号传递的数学理论[2]。他否认了交流和相关信息理论的语义方面。根据他的理论,该信息是指减少不确定性并等于传达信息的熵的机会。他从第二种热力学定律[2],[3]中得出了熵的想法,并得出结论,信息的信息可以通过其可预测性来衡量,其可预测性越小,其携带的信息越多[2],[3]。很明显,香农对信息的定义不是唯一的,仅适合其工程要求[2],[3]。在这个信息概念中,数据的来源,渠道和接收器是通信工程的关键组成部分。香农熵(信息)仅与给定系统的统计属性有关,与系统状态的含义和语义内容无关[5]。正如他在开创性文章中强调的那样,沟通和相关信息内容的含义与工程问题无关[1]。随后,围绕着身体和生物学信息的香农概念出现了一些批评[3]。信息独立于其含义的概念是Mackay和其他人宣布的主要批评的主题[3],[4]。随后尝试为形式的信息理论增加语义维度,尤其是对香农理论[5] - [7]。香农的理论与单个信息无关,而是源消息的平均值[8]。尽管物理信息基本上与物理可测量的数量有关,但当前的物理信息概念仍然是香农引入的相同定义,并且似乎不足以用于物理系统。在Bruckner和Zeilinger的最新作品中提醒了这[9]。他们的主张主要原因是量子力学中的测量问题。换句话说,没有确定的真实
数学物理学 2 12MATHP502 原子核 2 12PHEPN502 天体物理学 2 12PHAST502 低温物理学 1 12PHCMP502 量子传输物理学 2 12PHAPP504 光学特性 2 12PHOPT502 超导量子物理学 1 12PHQUI502 行星与空间物理学 2 12PHGEO504 生物物理学 2 12PHBCS502
参考文献 1. McGinty, C. (2023). McGinty 方程:统一量子场论和分形理论以理解亚原子行为。国际理论与计算物理杂志,5 (2),1-5。 2. 't Hooft, G. (1993)。量子引力中的维度减少。arXiv preprint gr-qc/9310026。 3. Susskind, L. (1995)。全息图般的世界。数学物理杂志,36 (11),6377-6396。 4. Maldacena, J. (1999)。超共形场论和超引力的大 N 极限。国际理论物理杂志,38 (4),1113-1133。 5. Bekenstein, JD (1973)。黑洞和熵。 6. Hawking, SW (1975). 黑洞产生的粒子. 数学物理通讯, 43(3), 199- 220.
对 MEQ 初步影响的探索已显示出巨大的潜力。通过统一量子物理、场论和引力,MEQ 为研究量子粒子的行为和时空的性质提供了新的途径。然而,必须强调进一步的实验验证和改进的必要性,以确定 MEQ 的全部范围和适用性。我们邀请物理学界参与对 MEQ 的批判性评估,包括其数学推导、概念原理和含义。我们强烈鼓励识别局限性并提出理论检验和实验测试的途径。通过集体审查 MEQ,我们旨在加深对量子物理、场论和引力的理解,同时推动统一理论框架的发展。
p(活着)= | ⟨活着| ψ(t)⟩| 2 = | a e(t)| 2,p(dead)= | ⟨活着| ψ(t)⟩| 2 = | a g(t)| 2。(1.4)
Collaborators Robert Distasio Jr. (Cornell), Anatale von Lilienfeld (Basel), Andrew Ferguson (U Chicago), Sapun Parekh (UT Austin), Dirk Schneider (Jgu Mainz), Alexandre tkatchenko (Luxembourgg), Michael Wand (Jgu Mainz), Jilles Vreeken (Sarland), Luca Ghiringhelli(FHI柏林)Collaborators Robert Distasio Jr. (Cornell), Anatale von Lilienfeld (Basel), Andrew Ferguson (U Chicago), Sapun Parekh (UT Austin), Dirk Schneider (Jgu Mainz), Alexandre tkatchenko (Luxembourgg), Michael Wand (Jgu Mainz), Jilles Vreeken (Sarland), Luca Ghiringhelli(FHI柏林)
09:30 ~ 09:45 Germar Hoffmann Sunao Shimizu Yu-Wei Chen Ravish Kumar Jain YingLin Li Yu Hung Lin JaYil Lee Yan-Ru Chen Chan-Ching Lien Saikat Karmakar Po-Feng Wu Amar Aryan Chen-Kang Huang Hsin-Yeh Wu Chin-Chia Wu Anli Tsai
Figure 12.1540-MeV 209Bi ion irradiation 1.7 × 10 11 ions/cm 2 TEM images of AlGaN/GaN HEMT devices: (a) Gate region cross-section; (b) The orbital image of the heterojunction region shown in Figure (a); (c) The image shown in Figure (a) has a depth of approximately 500 nm; (d) Traces formed at the drain; (e) As shown in Figure (d), the trajectory appears at a depth of ap- proximately 500 nm [48] 图 12.1540-MeV 209Bi 离子辐照 1.7 × 10 11 ions/cm 2 的 AlGaN/GaN HEMT 器件的 TEM 图像: (a) 栅极区域截面; (b) 图 (a) 所示异质结区域轨道图 像; (c) 图 (a) 所示深度约 500 nm 图像; (d) 在漏极形成的痕迹; (e) 如图 (d) 所示,轨迹出现在深度约 500 nm 处 [48]