. 使用磁法和甚低频地面法以及无人机、感应极化 (IP)、自然电位 (SP)、电阻率成像 (ERT) 和电磁法 (vTEM) 进行矿物勘探地球物理调查。地球物理和地质调查和技术在地下水勘探、岩土现场研究、考古勘探、环境研究和地热能中的应用。
表 2 水文测量中使用的电子定位系统的带宽分类 带宽 符号 频率 系统 甚低频 VLF 10-30 KHz Omega 低频 LF 30-300 KHz LORAN-C 中频 MF 300-3000 KHz Raydist、Decca 高频 HF 3-30 MHz 基本地球频率 10.23 MHz 甚高频 VHF 30-300 MHz VOR 飞机导航 超高频 UHF 300-3000 MHz Del Norte L 波段 NAVSTAR GPS 超高频 SHF 3-30 GHz(微波 EPS)C 波段 Motorola S 波段 Cubic X 波段 Del Norte 可见光 EDM* 激光 EDM 红外光 EDM、Polarfix * 电子测距仪器。表 3 水文测量中使用的电子定位系统的现场应用 频率范围 系统类型 可操作距离 现场应用 低频和中频范围 双曲相位/脉冲差分
地质调查局局长和航空地球物理学领域的先驱,于 1987 年 8 月 12 日在阿拉斯加凯奇坎附近的一次直升机与飞机相撞中丧生。弗兰克出生于犹他州比克内尔。他获得了犹他大学电气工程理学学士学位 (1950) 和地球物理学理学硕士学位 (1953)。他继续在科罗拉多大学深造,获得了第二个地球物理数学理学硕士学位 (1967) 和电气工程物理学博士学位 (1973)。弗兰克在美国地质调查局的职业生涯长达 35 年,从 1952 年开始从事机载地球物理仪器、数据汇编和解释问题的工作。从 1955 年到 1962 年,他开发了各种可控和自然源电磁技术,应用于众多地质问题。1962 年,美国地质调查局购买了一架 Convair 240 飞机,Frank 参与了航空勘测地球物理仪器的开发、采购和测试。他特别感兴趣的是新的 INPUT 电磁系统和自动磁力仪系统。他积累的经验促成了现在的经典教科书“地球物理勘探中的电气方法”,该书于 1966 年与 George V. Keller 合作出版。1967 年,Frank 发表了第一条计算机生成的分层地球理论电磁测深曲线,成为大多数早期航空电磁解释方法的基础。在同一时期,弗兰克还开发了一个比例模型电磁测试设施,该设施提供了对理解现场观测和测试解释方法至关重要的数据。他的模型结果被国际公认为检查数值结果的标准。他开发了一种机载甚低频 (VLF) 接收器,其中包含一个电场参考,使其能够生成电阻率图
本研究描述了现场实验,在配备无线电等离子体波接收器的空间物理卫星与其他空间物体结合时测量甚低频 (VLF) 等离子体波 (1-30 kHz),以了解次级空间物体在另一颗卫星附近的快速通过是否可以被检测到。地球电离层中的物体在其轨道运动后会形成一个离子密度稀疏区域,这可以作为物体探测的基础。2022 年,现场实验尝试在太空无线电等离子体传感器快速穿越次级空间物体尾流期间将这些离子密度稀疏检测为宽带 VLF 等离子体波噪声。这是为了回答空间物体是否可以通过其轨道运动在地球电离层中引起的等离子体离子密度扰动来探测。加拿大空间物理卫星 CASSIOPE 启动了其无线电等离子体物理包,并在 CASSIOPE 与次级物体之间预测已知的近距离接近之前、期间和之后的时间记录了电场数据。 CASSIOPE 旨在测量地球的极光、粒子和场,其偏心轨道为 330 x 1200 公里,可偶然采集地球电离层中的各种等离子体状态。此外,对于太空领域意识社区来说,该轨道定期穿过人口密集的轨道壳层,例如 Starlink、Iridium、OneWeb 和其他太空物体,从而定期提供合相机会来尝试测量等离子体振荡。在合相之前,CASSIOPE 从其交叉偶极子无线电接收仪 (RRI) 收集了电场测量值,该仪器可检测到跨度约为 1-35 kHz 的等离子体电场振荡。2022 年初,共描述了 35 次合相。当物体穿过或靠近次级物体的预测尾流时,四次合相表现出 VLF 宽带噪声能量,范围从离子回旋频率 (~36 Hz) 到下混合谐振频率 (~5-6 kHz)。然而,我们发现与次级物体最接近时间的相关性从弱到强。其他会合中,次级物体从 CASSIOPE 后面经过,而 RRI 未穿过次级物体的尾迹,其波能并未超过环境背景辐射 - 这与空间物体离子声马赫锥外的等离子体将表现出未受干扰的等离子体行为的预测一致。虽然空间物体尾迹中的密度稀疏似乎与 VLF 范围内的会合有微弱的关联,但这些发现表明,应从等离子体波的角度来检查检测到的波能与次级物体运动之间的空间和时间分离,其中波能相对于空间物体尾迹几何约束之外的地磁场线传播。