Erwandi Yanto使用统计方法和气体地热测定法增强地热储层温度估计:探索阶段的Lumut Balai场的案例研究,通常使用地热测定法估算储层温度。但是,由于地质学家和地球化学家之间的解释和见解,大量的表面表现数据有时可能导致温度估计的差异。此外,井下压力和温度测量值可能显示出轻微的变化。为了应对这些挑战,可以采用基本的统计方法来定量地对数据进行分类并简化温度地热计的确定。通过基于相似特征将数据分组到人群中,并使用直方图和概率图(P-图)分析它们,我们可以更好地理解每个人群的分布。由极值引起的离群数据可以排除在于提高准确性。结果表明,P10值(最乐观)来自直方图与井下温度测量值紧密一致。使用地热计的估计储层温度范围为243°C至273°C,代表最乐观的温度范围。这与几个生产井中从PT数据获得的最高储层温度的范围很好,即221°C至266°C。#3
(1) 收入。公司生产和销售石油和天然气。但实际价格通常偏离基准价格(如西德克萨斯中质原油)。差异或基准差额与原油的质量(重力和含硫量)以及销售点有关。偏远地区提供折扣价格,因为产品必须进一步运输到市场。此外,公司将开发收益或损失确认为收入收益或损失,其中未“结束”并未调整 EBITDA。 (2) 销售成本。无数的运营费用被合并。租赁运营费用与监控和维护生产井有关。收集和运输成本是收集产品并将其送往市场的费用(管道费)。加工成本是净化和提取副产品(如 NGL)而产生的。营销涉及购买和销售商品以履行合同承诺或利用地理价格差异,并可产生收入或费用。生产税是向地方政府缴纳的义务。 (3) 折旧和资本支出。油井成本是主要驱动因素,但公司也在基础设施(管道、设施、水处理)上投入了大量资金。为了现金税,折旧通常会加速,从而产生递延。 (4) 现金税和所得税费用。E&P 通常支付现金税,因为 2014 年价格暴跌造成的净营业亏损结转已基本取消,除非上述递延有意义。 (5) 净收购/销售。这包括收购租约(增加经营面积)、收购公司和面积互换。后者使生产商能够整合经营足迹,提高效率。
摘要 本研究旨在全面调查由地热能驱动的单效水/溴化锂吸收式制冷机的性能。由于吸收循环被视为低品位能量循环,这种用低品位能量排出单闪蒸地热发电厂流体的创新想法将是一种高效、经济且有前途的技术。为了检验这种方法的可行性,考虑评估位于阿联酋沙迦的一栋住宅建筑的 39 kW 制冷能力,该能力是使用 MATLAB 软件计算的。根据获得的冷却负荷,对所需的水/溴化锂单效吸收式制冷机进行建模并进行讨论。使用工程方程求解器软件 (EES) 对所提模型在不同条件下的详细性能分析。根据获得的结果,所提系统设计的主要因素是热交换器的尺寸和输入热源温度。结果以图表形式呈现,表明地热流体温度和质量流量以及溶液热交换器效率对制冷机热性能的影响。此外,还给出了吸收式制冷机各部件尺寸对满足空间供暖的冷负荷的影响。当发电厂的生产井温度为 250 ℃ 、分离器压力为 0.24 MPa 、冷凝器压力为 7.5 kPa 时,单闪蒸地热发电厂的热效率约为 13%。结果表明,当地热流体温度为 120 ℃ 时,溶液热交换器效率为 0.9 时,性能系数 (COP) 达到约 0.87 。
CO 2羽状地热(CPG)能量系统循环地质存储的CO 2从自然渗透的沉积盆地中提取地热热。CPG系统比温度适中和渗透性的地质储层中的盐水系统比盐水系统产生更多的电力。在这里,我们在数值上模拟了沉积盆地的温度耗竭,并发现了相应的CPG发电变化。我们发现,对于给定的储层深度,温度,厚度,渗透性和井配置,最佳的井间距为储层寿命提供了最大的平均电力发电。如果井的间隔比最佳的距离更接近,则会产生较高的峰值电力,但是储层热耗尽较快。如果井的间隔大于最佳井,则伏耐热较长,但对流动的阻力更高,因此产生了较低的峰值电力。此外,比最佳的井相比,井的间距比最佳井比最佳井的间距要比最佳井的距离高10%。我们的模拟还表明,对于300 m厚的储层,707 m的井间距可在50年内提供一致的电力,而300 m的井间距会随着时间的推移而产生大量的热量和电力。最后,增加注射或生产井的管道不一定会增加平均电力发电。©2020作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
摘要:立陶宛位于波罗的海沉积盆地的东部,并在该国西南地区有一个地热异常。在异常内有两个主要的地热复合物,由寒武纪和泥盆纪含水层组成。寒武纪的形成由砂岩组成,砂岩的温度达到96℃(深度> 2000 m)。泥盆纪含水层由parnu – kemeri的未固结砂组成,储层温度高达46℃(深度> 1000 m)。从历史上看,已经研究了两种地层的地热能生产。在本文中,我们介绍了对两种编队的地热工作的详细文献回顾,包括过去,现在和一些可能的未来研究。本文介绍的研究强调了先前研究工作的关键发现,总结了研究差距,然后详细阐述了新兴技术在弥合研究差距并提高我们对立陶宛地热络合物的理解的可能应用。尽管这不是本文的主要目的,但本文还涉及开发2D/3D数值模型的重要需求,以量化不确定性,以评估立陶宛的地热潜力用于商业发展。这项研究还强调了扩展地热发育以通过重新利用高水生产井来耗尽碳氢化合物储层的可能性。因此,需要开发多物理学热力学 - 化学(THMC)模型来评估储层行为。此外,从文献综述中,可以得出结论,立陶宛地热含水层本质上是高盐水,温度变化导致储层上游和下游盐的沉积。文献还将THMC模型的潜在使用和开发描述为必须进行的未来工作的一部分。
地热井是任何地热发电设施中的关键组成部分和大多数资本密集型部分。但是,他们经常在一生中经历压力下降,在某些情况下导致井压力低于发电厂的运营条件,这使得井无法使用发电。这可以使整个项目更加昂贵,因为必须钻出其他井来补偿不可用的蒸汽以维持所需的电厂输出。本研究探讨了使用弹出器来解决该问题的可能性。弹出器已用于石油和天然气和制冷行业的各种应用中。在地热发电中,喷射器被广泛用于从冷凝器中提取不可凝聚的气体。弹出器是使用高压流的动能来诱导低压流的流动的静态设备。超音速喷射器通过使用收敛性喷嘴将主要流体加速到超音速条件来起作用。这会产生一种压力,使二次流夹入,混合物在中间压力下退出。这项工作中描述的实验是在雷克雅未克大学能源实验室进行的,以在实验室规模上制造和测试超音速弹出器。是为了在不同的压力下连接两个饱和蒸汽流,并将结果与早期研究中开发的分析模型进行比较。该实验集中在喷射器尺寸对性能的影响上,特别是恒定面积混合部分(CAM)。该实验成功地证明了喷射器通过表现出受到压力和二次流的夹带而起作用,尽管与分析模型没有良好的匹配。从实验中,使用夹带比率的5 mM凸轮排出器提供了最佳的结果,达到了压力和出口压力以衡量其性能。分析模型还用于设计潜在的超音速喷射器,以连接肯尼亚奥尔卡里亚地热场的两个生产井。设计表明,可以使用此弹出器产生另外的2.2 MW电力。
对含水层热量储存(ATE)中技术的描述,在地下含水层中存储过多的热量,以便在以后恢复热量。热能被存储为温暖的地下水。地下水也被用作载热到地下的载体。因此,热能是通过从含水层从含水层从含水层从含水层中生产和注入地下水来存储和回收的。ATES系统的容量从0.33 MW到20 MW(Fleuchaus等人2018)。通常,ATES是季节性的。在夏季,通过热交换器转移到寒冷的地下水中,来自天然气或燃煤发电厂,太阳能或热电联产厂的过量热量被转移到寒冷的地下水中。由此产生的温暖地下水将热量运输到含热量的含水层中。在冬季,通过逆转生产和注入井的流量,将ATES运行相反的方向。现在,通过热交换器从温暖的地下水中回收了存储的热量,并用于加热目的,而所产生的冷地下水则在含水层中重新注射。通常,注入和生产井之间的距离在1000 m至2000 m之间(Stober and Bucher 2014)。含水层的深度也有所不同。在柏林,例如,在浅水含水层中,ATE的深度在30 m至60 m之间,而在Neuruppin中,它约为1700 m。在荷兰,大多数ATES系统在地下中使用20 m至150 m之间的含水层(Bloemendal和Hartog 2018)。过多热量与深度相对应,在不同温度下进行热量储藏。低温(LT)ate在30°C以下运行,通常位于浅含水层中,中等温度(MT)ates是指在30°C和50°C之间的温度范围和高温(HT)ATES在50°C和更高的温度(Lee 2013)下运行(Lee 2013)。与MT-和HT-ates相比,由于LT-ates的低温,热泵可将温度提高到加热相关建筑物(例如40°C)所需的水平。同时将提取的地下水冷却至5°C和8°C之间的温度。随后,将冷地下水重新注入冷井中。在夏季,可以使用寒冷井中的地下水有效冷却建筑物。由于热泵的冷却过程,该水被加热到14°C和18°C之间的温度范围。随后,加热的地下水是通过LT-ates的温暖井来存储的,以便冬季以后恢复。如果冷却在上一个冬季存储的低温地下水旁边不需要设施,则称为免费冷却。
能源资源关键因素概述 简介 美国从多种来源产生能源,但从最基本的层面上讲,每种方法都会转动涡轮机来发电。 然后,这些电力被输入电网,分配给家庭和企业。 美国每年消耗大约 4 万亿千瓦时 (kWh) 的电力。 产生这些电力的能源结构是公共政策和私人行动的混合体。 2023 年,地热发电占美国电力的 0.4%。 地热热泵也用于住宅和商业供暖,其市场份额在美国稳步增长。 本政策简报将概述影响当前和未来地热利用以满足美国能源需求的八个关键因素。 为了帮助全面了解地热的能源前景,本简报将研究其能量密度、发电成本、可用性和储量、所需土地、总体安全记录、气候影响、长期影响以及能源的潜在限制。地热基础知识 地热通常通过水/蒸汽管道从地下收集热能,并将其转化为电能。地热能自然存在于地球内部,可以自然地以温泉和蒸汽喷泉的形式出现在地表。人类利用地热取暖和沐浴已有数千年历史。如今,地热能产业正在扩大,每年都有公用事业规模的地热发电厂加入电网。利用地热能的过程使用与大多数发电机相同的概念:转动涡轮机。对于公用事业规模的发电,首先将冷水泵入地下较热的地下区域,有时深度可达数千英尺。在那里,水将被地球自然加热。地热利用的是地球核心的热量,这种热量也是造成地壳运动和火山爆发的原因。水在地下加热后,生产井将热水和蒸汽泵回,用于推动涡轮机发电。 1 蒸汽被收集起来并冷却回水中,然后再次被泵回注入井。地理位置是公用事业规模地热发电的一个限制因素。地热能需要地下丰富的热量,这些热量必须包含适当的岩石渗透性才能让水通过。2 出于这些原因,大多数公用事业规模的地热能都位于板块边界附近,那里的地壳较薄,热量更容易获取。有时可以在岩石渗透性不理想的地区建造地下水库,但这也取决于地理位置。3 美国 92% 以上的地热能来自加利福尼亚州和内华达州,其余电力来自犹他州、夏威夷州、俄勒冈州、爱达荷州和新墨西哥州。
Eni UK Limited的最终母公司是Eni Spa,是通过其ENI Group Affiliate LBA CCS Ltd. LBA CCS Ltd的联盟的领先合作伙伴。该开发的环境声明的日期为2024年2月(参考号ES/2022/009)。该开发的基本性质是基础架构的重新修复,安装和调试以及利物浦湾二氧化碳(“ CO 2”)的运输,注入和存储的井和基础架构的运营和维护,在利物浦湾的二氧化碳(CO 2”)耗尽的石油和天然气储藏厂耗尽了含碳氧化物的储藏室中的含量。开发涵盖了英国,离岸许可的块110/13A,110/13B,110/14A,110/14C和110/15A。整个开发区域的水深高度可变,范围从0.72 m到35 m,平均水深低于最低天文学潮汐。该开发项目位于威尔士海岸线以北约12公里,在英国海岸线以西2公里。到最近的国际中位线(英国/爱尔兰)的距离为60 nm。lba CCS Ltd打算从AYR(POA)气体终端的现有海上天然气进口管道重新使用,以成为向道格拉斯碳捕获和存储(CCS)平台运输CO 2的出口管道,并将其往返汉密尔顿主机,汉密尔顿北部,汉密尔顿北部,汉密尔顿北部和Lennox平台,以供置于deplecection deplecection deplecection depleceper depleted osection depleted osection。该项目完全位于威尔士和英国领土的12 nm限制之内。可以总结开发,如下所示:a)安装新的道格拉斯CCS平台来替换现有的道格拉斯进程平台。这将从陆上POA终端接收CO 2,并通过现有的燃气管道将CO 2分发给汉密尔顿Main,Hamilton North和Lennox Wellhead平台; b)在25年内,使用现有的汉密尔顿Main,汉密尔顿北部和伦诺克斯水库用于注入109吨CO 2的CO 2; c)注射和监测井的钻井和重新完成现有生产井; d)安装新的管道部分,以将新的道格拉斯CCS平台和现有的海底天然气管道连接起来; e)在汉密尔顿主,汉密尔顿北部和Lennox Wellhead平台上安装新的顶部; f)安装两条潜艇33KV电源电缆,并具有从POA终端陆上到修改的道格拉斯平台的集成光纤电缆连接,以及与三个卫星平台的连接; g)根据相关的监管要求,在CO 2注入期间和之后对LBA CCS存储站点进行监视和管理。该基础设施已在环境声明中的开发时间表中进行了评估,计划的活动时间表如下:a)新的道格拉斯CCS平台的安装将在大约两个月的时间内与新的夹克,桩和上衣一起开始,并在第22277季度的新夹克,桩和顶层开始; b)从Q3/Q4 2024到Q4 2026的注射,监视和哨兵井的钻孔,侧面跟踪和重新完成; c)拆除现有的卫星平台顶部,并在第二季度/Q3 2027期间替换了新的卫星平台; d)电缆铺设并从Q3 2025到Q2 2026进行操作; e)在Q2/Q3 2027期间,电缆绑在CCS平台上; f)在第4季度2027中首次注射CO 2。