摘要。最近已经开发了许多基于新颖的玻璃设计,低发射率薄片涂层以及专有荧光中间层类型的现代玻璃和窗户产品。当今的高级窗户可以控制诸如热发射,热量增益,颜色和透明度之类的属性。在新型的玻璃产品中,还通过图案化的半导体薄膜能量转换表面或使用发光浓度型方法来实现较高的透明度。通常,对于建筑行业和农业的应用(温室)应用,半透明的和高度透明的PV窗口是专门设计的,包括特殊类型的发光材料,衍射微结构,定制的玻璃系统和电路。最近,在构建集成的高透明太阳能窗口中已经证明了显着的进步(具有高达70%的可见光传输,电力输出p max 〜30 33 w p /m 2,例如< /div>,ClearVue PV太阳能窗);这些预计将在温室装置中为智能城市和先进的Agrivoltaics的发展增加动力。目前(2023年),这些ClearVue窗口设计是唯一可以在建筑物中提供明显的能源节省的视觉清晰和部署的建筑材料,同时又具有大量可再生能源的能源。这项研究的目的是将ClearVue®PV窗口系统的最新工业化开发置于发光浓缩器领域中先前研究的更广泛的背景,并提供一些有关在研究温室建筑物包裹中部署的几种Clearvue窗口设计类型的测量性能特征的细节,以阐明其能量差异,并在其相应的差异中进行了差异。提供了这些最近开发的透明Agrivoltaic建筑材料的实际应用潜力的评估,重点关注可再生能源产生数字以及在一项长期研究中观察到的季节性趋势。本文报道了2021年初在默多克大学(澳大利亚珀斯)建造的基于研究温室的Agrivoltaic装置的测量绩效特征。默多克大学的太阳能温室已经证明了由于其建筑物的现场能源生产而产生的明显节省的商业粮食生产潜力。
财政部计量经济学模型,财政部采用了最广泛接受的预测方法。此方法使用历史统计数据通过回归分析,即同时的方程式来估计称为计量经济学模型的系统。这些模型符合各种经济变量之间的历史关系,例如个人收入,就业,通货膨胀,工业生产等。然后将这些方程式系统解决到未来,以预测关键经济条件的水平。这是过去是对未来的良好预测指标时使用的最佳方法。制定加利福尼亚的经济预测需要对美国经济进行预测。使用IHS Global Insight的复杂商业宏观经济模型,该部门开发了国家预测。该模型的原始版本是沃顿商计算预测模型,由诺贝尔奖获得者劳伦斯·克莱因(Lawrence Klein)构建。IHS全球见解现在是美国最广泛的美国计量经济学模型和预测服务。它在政府和私营企业中的预测和计量经济学建模方面受到了尊重。全球洞察模型是一个复杂的计量经济学动态平衡增长模型,其中包含1,800多种经济,金融和商业概念以及1,500多个方程式,该方程几乎跟踪了几乎所有可能的经济活动,包括最终需求,总计供应,价格,价格,收入,收入,国际贸易,工业细节,利率和金融流量,利率和金融流量。该部门开发并维护自己的加利福尼亚经济体经济学模式。在增长模型中,技术进步的扩展率,劳动力和资本存量决定了经济的生产潜力。技术进度和资本存量都受投资的管辖,而投资又必须与税后资本成本,可用储蓄以及当前支出的容量要求保持平衡。结果,货币和财政政策将通过对国家储蓄和投资的影响来影响这种经济的短期和长期特征。由于加利福尼亚的预测主要关注就业和个人收入,因此该模型根据北美工业分类系统将经济划分为近30个行业组成部分,并进行了一些修改,以突出加利福尼亚州独有的领域 - 分配器,航空航天,信息。根据美国的经济预测和最新的加利福尼亚经济数据,行业就业和工资率是预测的。然后将它们乘以得出总工资和工资,这是个人收入的最大组成部分。对其他收入来源的预测(有成年人的收入,利息,股息,租金和转让款项)已添加到工资和薪水中,以估算个人收入总额。行业就业总计为项目总就业。其他经济变量(包括建筑活动和失业率)也被预测,因为它们会影响某些行业就业组成部分和收入来源。为为州长的预算预测做准备,该部门每年11月举行了一个前景会议。邀请来自学术界,政府和私营企业的各种著名的加利福尼亚预报员参加本次会议,以审查最近的事件和经济信息,并讨论
州简介:俄克拉荷马州背景俄克拉荷马州是主要的天然气和石油生产州,是能源净出口州。该州从各种资源中具有巨大的能源生产潜力。几十年来,石油和天然气一直是俄克拉荷马州经济的主要支柱。该州拥有全美第六大天然气储量,2022 年是第五大天然气生产州。2022 年天然气约占该州净发电量的 43%。自 1920 年代以来,俄克拉荷马州的煤炭产量一直在下降。该州用于发电的大部分煤炭都是从怀俄明州进口的。近年来,俄克拉荷马州利用了其巨大的可再生能源潜力。2022 年,该州约 48% 的净发电量来自可再生能源,比 2011 年的 10% 左右大幅增长。风能资源在该州的可再生能源发电中占主导地位,2022 年,俄克拉荷马州的风能净发电量在全国排名第三。美国最大的风电场之一特拉弗斯风能中心于 2022 年春季投入使用。该项目拥有 356 台涡轮机,预计每年可产生足够的能源为 300,000 户家庭供电。特拉弗斯风能中心是北中部能源设施项目的一部分,该项目还包括俄克拉荷马州的另外两个风电项目,即 Maverick 和 Sundance。俄克拉荷马州的人工湖数量超过其他任何州,其中 10 个拥有水力发电厂,2022 年将提供该州约 3% 的发电量。尽管太阳能仅占该州可再生电力发电量的 0.5% 左右,但 2019 年至 2021 年期间太阳能发电量翻了一番。2023 年,太阳能产业协会将俄克拉荷马州在太阳能装机容量(128 兆瓦 (MW))方面排名全国第 45 位,在未来五年的预计增长量(2,099 MW)方面排名第 24 位。 2023 年美国能源和就业报告发现,2022 年,俄克拉荷马州估计有 135,783 名能源工人(占该州总就业人数的 8.2%),其中包括 14,142 名从事能源效率工作的工人。在 2022 年的一份报告中,俄克拉荷马州在清洁能源工作岗位方面在全国排名第 33 位,约有 21,602 名俄克拉荷马人受雇于该行业。俄克拉荷马州公司委员会 (OCC) 监管该州三家投资者所有的电力公用事业公司和五家未选择退出监管监督的电力合作社。OCC 还监管该州六家投资者所有的天然气公用事业公司的费率和可靠性。OCC 有三名民选委员,目前所有委员都是共和党成员。该州处于统一控制之下,共和党在该州立法机构的两院中均占多数,共和党州长凯文·斯蒂特领导行政部门。
[纽约,纽约 - 2024年9月10日]可持续能源非政府组织能源愿景(EV今天发布了与美国能源部Argonne国家实验室合作进行的美国可再生天然气(RNG)行业的年度评估。它显示了去年生产RNG的项目的快速增长,并且在最新的全球甲烷预算显示出排放迅速上升的时候,深度甲烷排放量的潜在途径可能会削减。新的EV/ANL评估跟踪RNG生产设施,其中一部分或所有输出用作运输燃料。RNG是当今可用的最低碳运输燃料。通过取代碳密集型柴油燃料,它将重型卡车和公共汽车从重型卡车和公共汽车的排放量减少到零。最新的评估发现,到2023年底(最近可用的调查数据的最新时期)有542 RNG生产设施,至少有一些其产出已或将用于运输。其中包括305个正在运营的设施以及正在建设中的126个设施,在各个计划阶段中包括111个设施。在过去两年中,总体增长了33.8%。在2023年底,305个运营的RNG设施能够生产足够的燃料,每年取代近8.43亿加仑的柴油燃料(足以为美国巷道上的所有人员中的一半以上供电,足以为96,900辆垃圾车供电。在过去两年中,RNG生产能力增加了22%。随着管道中的另外237个RNG项目,产能的快速增长可能会持续下去。RNG生长可以显着减少甲烷排放。当有机废物分解时,它们会发出甲烷沼气酶,但可以将它们逃入大气中,而是可以在称为“厌氧消化器”的无空气储罐中捕获,并改进了RNG燃料。根据Argonne National Laboratory的迎接排放建模工具的说法,食物浪费或农场生产产生的RNG在其生命周期(生产,运输和使用)(即生产,生产,运输和运输)上是负面的,即在生产燃料时(甲烷)捕获更多的温室气体(如甲烷),该燃料比燃烧的车辆燃烧(CO2)。“我们的数据表明,通过分解食物和其他有机废物而产生的甲烷可再生天然气生产的迅速增长,”为Argonne National Laboratory项目管理该项目的Marianne Mintz说。“捕获甲烷,用它来取代化石燃料,并在车辆中燃烧,可显着减少温室气体的排放。”能源愿景总裁马特·托米奇(Matt Tomich)表示:“尽管在这项评估中记录的美国RNG生产的扩展是向前迈出的重要一步,但我们需要看到更多的东西,如果我们要真正实现全球甲烷承诺。”“美国的Doment Rng生产潜力
A. Keller 1 、A. Lauber 2 、A. Doberer 2 、J. Good 2 、T. Nussbaumer 2 、MF Heringa 3 、PF DeCarlo 3 、R. Chirico 3 、A. Richard 3 、ASH Prevôt 3 、U. Baltensperger 3 和 H. Burtscher 1 1 瑞士西北应用科学大学气溶胶和传感器技术研究所,5210,温迪施,瑞士 2 卢塞恩应用科学与艺术大学工程与建筑学院,6048,霍尔夫,瑞士 3 保罗谢尔研究所大气化学实验室,5232,菲利根,瑞士 木材燃烧是一种可再生和二氧化碳中性的能源。然而,在燃烧过程中,它会排放颗粒物,对气候、能见度和人类健康有影响。直到最近,人们还认为木材燃烧对环境颗粒物浓度的贡献很小,并为了减少其他来源的污染而忽视了这一点。这种情况已经发生了变化:最近的污染源认定研究表明,木材燃烧是颗粒物污染的主要来源之一。然而,这种燃烧形式带来了一个全新的挑战,因为与木材燃烧有关的大气颗粒物中很大一部分最初是在气相中排放的。这些是碳氢化合物分子,也称为有机气态碳 (OGC),一旦进入大气就会转化为称为二次有机气溶胶 (SOA) 的颗粒。在本文中,我们展示了这种情况的排放方面。我们介绍了不同住宅生物质燃烧装置的排放因子,重点介绍了冷凝相和气相中排放的有机物。当比较这两个阶段时,SOA 作为环境 PM 组成部分的相关性变得显而易见。我们的测量结果表明,有机物仅占直接排放颗粒质量的一小部分。典型的有机物与黑碳比率 (OM/BC) 在颗粒锅炉中约为 1.3,而在原木炉中则低至 0.2。这与大气中测量到的高浓度有机物形成鲜明对比,在大气中,与木材燃烧相关的有机物与元素碳比率可高达 20(参见 Szidat,2006 年及其参考文献)。差异是由源自 OGC 排放的 SOA 有机物引起的。这引发了一个问题,即如何量化燃烧的质量及其潜在影响。例如,现代原木炉和自动颗粒锅炉可能具有相似的颗粒物排放因子,但它们的 OGC 排放量完全不同(见图 1)。特别是在稳定阶段,自动颗粒锅炉几乎不排放 OGC。其他研究(例如 Chirico,2010 年)证实,颗粒锅炉具有较小的 SOA 生产潜力。此外,研究表明,对于 PM 排放因子相对较小的变化(即相差不到一个数量级),而 OGC 的排放因子可以相差大约三个数量级(Johansson,2004)。目前的标准只包括排放中的固体部分,而忽略了气相,更重要的是,忽略了它的 SOA 生成潜力。这导致排放侧测量的颗粒质量与实际大气浓度之间存在很大差异。这种差异直接影响基于测量排放因子的其他研究。例如,风险评估和环境影响研究有一组不完整的数据,其中没有考虑 SOA,而且由于初级气溶胶和次级气溶胶的化学性质不同,它们的毒性和变暖潜力等特性也有很大差异
在2021 - 2022年期间,在乌克兰与俄罗斯之间的冲突加剧了1921 - 2022年,该国面临重大挑战。由于食品价格高涨和某些国家禁止的禁令,这种情况对粮食供应产生了不利影响。此外,农民面临着山洪泛滥和旋风Batsirai和Emnati后不利气候条件的影响。在这种挑战的情况下,Farei在各个方面都得到了征求,以提供恢复过程并增加本地生产的支持。的行动着重于采用可持续实践,重点是农业生态实践,以确保生产安全食品并减少昂贵的农业化学投入。提升卫生限制后,通常会恢复扩展活动。鉴于小型农民福利基金推广人员对种植者的注册,已分配责任验证将要续签注册的种植者和育种者,并适合那些根据农作物损失赔偿计划和ACASS获得赔偿的人。 进行了大约11,213次进行粮食作物调查的实地考察,并进行了1,620次与州土地占用,害虫和疾病,市场价格,不利气候条件的影响以及报告作物损失和ACASS的影响有关的另外1,620次访问。 总共完成了57个MQA批准的培训课程(33次农作物和24个牲畜),并由963名学员(531个作物和432个牲畜)参加。 与多种尖角相比,获得的马铃薯品种的产量更高。鉴于小型农民福利基金推广人员对种植者的注册,已分配责任验证将要续签注册的种植者和育种者,并适合那些根据农作物损失赔偿计划和ACASS获得赔偿的人。进行了大约11,213次进行粮食作物调查的实地考察,并进行了1,620次与州土地占用,害虫和疾病,市场价格,不利气候条件的影响以及报告作物损失和ACASS的影响有关的另外1,620次访问。总共完成了57个MQA批准的培训课程(33次农作物和24个牲畜),并由963名学员(531个作物和432个牲畜)参加。与多种尖角相比,获得的马铃薯品种的产量更高。在经济复苏计划中,Farei在HRDC支持的国家培训和重新技能计划(NTRS)方面合作。在人道主义紧急援助下,Farei也使MUR 1,758,020的赠款受益,以克服毛里求斯的溢油危机。该基金用于建设能力,并启动有关有机作物生产和鸡蛋生产的援助。在对新种质的引入和评估中保持了研发活动,以识别最佳性能。分别从CIAT和ICRISAT引入了7种耐热豆品种和六种花生品种以进行评估。在2021年还评估了16个番茄和8种辣椒品种。研究了新的蘑菇菌株,国王牡蛎,狮子鬃毛和甘诺省的生产潜力。地瓜和木薯品种被乘以生产潜在种植者的种植材料。还评估了新作物,例如藜麦,中国西兰花(Kailaan),羽衣甘蓝,菠菜,瑞士甜菜,芦笋和朝鲜蓟。采用了关于马铃薯,番茄和辣椒的常规育种计划,以及共老见,胡萝卜,白菜和花椰菜的突变育种。改进本地花椰菜和
Rahul Raj、Umesha C 和 Pranav Kumar DOI:https://doi.org/10.33545/26174693.2024.v8.i7Si.1606 摘要 田间试验于 2023 年喀里夫季节在农学系作物研究农场进行。实验采用随机区组设计,共十个处理,重复三次。处理细节如下:T 1:磷 40 千克/公顷 + 纳米尿素 1 毫升/升,T 2:磷 60 千克/公顷 + 纳米尿素 1 毫升/升,T 3:磷 80 千克/公顷 + 纳米尿素 1 毫升/升,T 4:磷 40 千克/公顷 + 纳米尿素 3 毫升/升,T 5:磷 60 千克/公顷 + 纳米尿素 3 毫升/升,T 6:磷 80 千克/公顷 + 纳米尿素 3 毫升/升,T 7:磷 40 千克/公顷 + 纳米尿素 4 毫升/升,T 8:磷 60 千克/公顷 + 纳米尿素 4 毫升/升,T 9:磷 80 千克/公顷 + 纳米尿素 4 毫升/升和对照地块。试验结果表明,施用 60 kg/ha 磷肥和 4 ml/l 纳米尿素(处理 8)可显著提高植株高度(202.00 cm)、最大植株干重(310.00 g/plant)、最大作物生长率(27.00 g/m 2 /day)、每穗最大行数(12.93)、行粒数(22.67)、种子指数(22.70 g)、籽粒产量(5.54 t/ha)、秸秆产量(9.92 t/ha)、收获指数(35.86%)。关键词:玉米,磷,纳米尿素,生长和产量。介绍玉米(Zea mays L.)是继水稻和小麦之后最重要的谷物作物之一,在全球农业中占有突出地位。在印度,玉米仅次于水稻和小麦,位居第三。在印度,玉米用于谷物和饲料,以及家禽和牛饲料混合物的成分和其他工业用途。玉米也称为玉蜀黍,是世界上最重要和最具战略意义的作物之一。其原产地是墨西哥(中美洲)。它是一种 C4 植物,被称为“谷物皇后”,因为它具有高生产潜力和跨季节的广泛适应性。它高效利用太阳能,具有巨大的增产潜力,被称为“奇迹作物”。玉米通过优质蛋白质在确保粮食安全和营养安全方面发挥着至关重要的作用。玉米的营养成分(每 100 克)如下:蛋白质 4 克。碳水化合物 30 克,膳食纤维 3.5 克,脂肪 1.5 克,糖 3.6 克,钙 4 毫克,锌 0.72 毫克等。(Dragana 等人,2015 年)[8]。玉米植株的每个部分都具有经济价值(谷粒、叶子、茎秆、穗和穗轴),都可用于生产各种食品和非食品产品。全球 170 多个国家种植玉米,面积达 1.88 亿公顷,产量达 14.23 亿公吨。自 2005 年以来,印度玉米种植面积位居第四位,为 989 万公顷,年产量为 3165 万吨,位居第六。在印度各邦中,中央邦和卡纳塔克邦的玉米种植面积最高(各占 15%),其次是马哈拉施特拉邦(10%)、拉贾斯坦邦(9%)、北方邦(8%)、比哈尔邦(7%)、特伦甘纳邦(6%)。目前,印度生产的玉米 47% 用于家禽饲料,13% 用于牲畜饲料,13% 用于食品,淀粉工业消耗约 14%,加工食品占 7%,6% 用于出口和其他用途。(IIMR,2021 年)。磷的应用会影响植物的生长行为。它是生长、糖和淀粉的利用、光合作用、细胞核形成和细胞分裂、脂肪和蛋白形成所必需的。光合作用和碳水化合物代谢产生的能量储存在磷酸盐化合物中,供以后生长和繁殖使用(Ayub 等人,2002 年)[5]。它在植物体内很容易转移,随着植物细胞的形成,从较老的组织转移到较年轻的组织