©Afyon KocatepeüNiversItesi抽象的细菌次生代谢物可用于控制微生物。在这项研究中,已经确定了来自Apis Mellifera和Varroa驱灾子的芽孢杆菌分离株的抗菌活性特性。根据椎间盘扩散方法研究了芽孢杆菌物种对某些细菌和致病酵母菌(念珠菌)的抗菌活性。研究的结果是,研究中使用的芽孢杆菌分离株的继发代谢产物以不同的速率抑制了测试的微生物的发展(1.1-8.4 mm抑制区)。两个分离株GAP2(枯草芽孢杆菌)和GAP9(苏云金芽孢杆菌)显示出较高的抗菌活性。从细菌分离株中分离的大多数代谢产物都对大肠杆菌ATCC2471和Marcescens ATCC13880(p <0.05)敏感。确定从GV6,GV7,GAP7,GAP8,GAP11,GAP13和GAP15分离株获得的产物不会影响实验中使用的任何细菌(P <0.05)。人们认为,产生次级代谢产物的芽孢杆菌菌株,尤其是GAP2和GAP9分离株,可能有可能用于医学,兽医,农业和食品工业的各种应用中的各种应用中。Anahtar Kelimeler:抗菌;抗真菌;芽孢杆菌;细菌;圆盘扩散测定;微生物学。
摘要:基于藻类的生物聚合物可用于各种能源相关的应用,例如电池和燃料电池中的分离器和聚合物电解质,也可以用作微藻生物燃料,这被视为高度可再生能源。为了这些目的,必须在本综述中讨论不同的物理,热化学和生化特性,例如孔隙率,高温耐药性或良好的电池机械性能,以及在生物燃料的情况下,基础材料的高能量密度和高能量以及在这些应用中使用Algae Biopolymers的环境方面的基础材料。另一方面,除了潜在用作聚合物电解质外,细菌生物聚合物还经常用于细菌纤维素分离剂或生物聚合物网络粘合剂中。此外,它们还被视为潜在的可持续生物燃料生产商和转换器。本综述旨在比较上述能量转换和存储的生物聚合物。关于藻类生物聚合物生产的挑战包括较低的可伸缩性和低成本效益,以及细菌聚合物,生长缓慢和非最佳发酵过程通常会引起挑战。另一方面,与常规聚合物相比,环境益处和更好的生物降解性是这些生物聚合物的很大优势,这些优势提出了进一步的研究,以使其生产更加经济。
需要找到具有巨大潜力的可再生能源资源(RER),这是因为石油和天然气已耗尽了其全容量,从而减少了全球产生的能源量。与制剂有关的问题,与酶的水解以及在可能产生生物能源之前必须完成的生物质培养过程有关的问题仍在持续的计划中得到解决。由于纳米技术为多种响应和操作提供了独特的活性领域,因此它可以克服这些生物质来源带来的困难。热解可用于可持续产生化学物质并从生物质中产生化学物质。但是,该过程的高生产费用阻止了它被广泛使用。使用废热和可再生祖细胞制造高质量的活性碳纳米颗粒,可以大大提高这种方法的长期可靠性和财务可行性。本文建议使用生物量热解生成绿色碳纳米材料(BP-GGCN)进行生物燃料和生物能源生产。建议的方法通过使用残留的热解气体和热废物产生上三维石墨烯气泡(3DGB)来充分利用生物质热解的财务收益和可持续性。最终的3DGB在能源存储和生态敏感的应用中效果很好。根据一项生命周期研究,当前方法的总体效果少于传统的化学蒸气沉积(CVD)技术对人类福祉,环境系统和资源的影响。该GGCN的特定品质可帮助生物燃料,生物柴油,酶和微生物燃料电池效果更好。
摘要:美国和欧盟种植了数百万公顷的覆盖作物,以控制土壤侵蚀、土壤肥力、水质、杂草和气候变化。尽管只有一小部分覆盖作物被收获,但不断增长的覆盖作物种植面积为生物燃料行业生产生物能源提供了新的生物质来源。油菜籽、向日葵和大豆等油籽作物是商品,已用于生产生物柴油和可持续航空燃料 (SAF)。其他覆盖作物,如黑麦、三叶草和苜蓿,已在小规模或中试规模上进行了测试,以生产纤维素乙醇、沼气、合成气、生物油和 SAF。鉴于各种生物燃料产品和途径,本综述旨在全面比较不同覆盖作物的生物燃料产量,并概述已采用的提高生物燃料产量的技术。人们设想,基因编辑工具可能会对生物燃料行业产生革命性的影响,覆盖作物供应链的工作对于系统扩大规模至关重要,而且可能需要高耐受性技术来处理生物燃料覆盖作物生物质的高度成分异质性和多变性。
生物燃料在欧盟气候和能源政策中的作用08多年来,欧盟一直在增加各种气候和能源政策目标,以应对气候变化。在2007年,欧盟同意到2020在2022年,委员会报告说实现了这一目标,因为到2020年的实际减少为32%。根据2015年巴黎协定,欧盟与1990年相比,到2030年将温室气体减少至少40%。 在2021年,欧盟采用了《欧洲气候法》,以进一步提高欧盟的野心,并在2030年(从1990年的水平到2030年)将排放量减少至少55%,这使欧洲踏上了到2050年到2050年成为气候中立的道路。根据2015年巴黎协定,欧盟与1990年相比,到2030年将温室气体减少至少40%。在2021年,欧盟采用了《欧洲气候法》,以进一步提高欧盟的野心,并在2030年(从1990年的水平到2030年)将排放量减少至少55%,这使欧洲踏上了到2050年到2050年成为气候中立的道路。
c机械工程系,科罗拉多大学博尔德大学,博尔德,博尔德,美国80309,美国B再生资源和启用科学中心,国家可再生能源实验室,Golden,Co 80401,美国C催化碳转换和规模上心,美国国家可再生能源实验中心,GOLDENITY,GOLDENITY,GOLDENITY,GOLDEN,GOLDINED,GOLDINE CO 80401,美国
重新排列,副本编号变体和序列变化(Newman,1985)。在2%的冠心病病例中,可以鉴定出非遗传原因,而20% - 30%的冠心病病例可以追溯到遗传原因(Cowan and Ware,2015年)。Qiao等。 报道说,VSD是一种与遗传原因最常相关的CHD,而36.8%的VSD与遗传因素有关(Qiao等,2021)。 尽管大多数VSD都是可修复的,并且患者可以在优化的手术和医疗条件下实现良好的长期预后,但对于某些患有患有相关遗传异常的VSD的患者,预后不令人满意(van Nisselrooij et al。,2020; Mone等,2021)。 因此,遗传异常的产前定义在VSD的诊断中非常重要,因为它可以提供更准确,更适当的遗传咨询,这可能会影响父母在持续/终止怀孕,产前监测和围产期护理方面的决策。 胎儿结构异常是侵入性产前基因检测的指标(Fu等,2022)。 具有结构异常的胎儿具有较高的非整倍性,染色体重排和序列变化的发生率(Fu等,2018)。 常规的核型分析是一种鉴定染色体重排的有效技术,诊断率在5.4%至15.5%之间(Hanna等,1996; Beke等,2005)。 但是,G带核型分析的分辨率很低,并且耗时且艰辛。 CMA具有很高的分辨率,并且时间很短。Qiao等。报道说,VSD是一种与遗传原因最常相关的CHD,而36.8%的VSD与遗传因素有关(Qiao等,2021)。尽管大多数VSD都是可修复的,并且患者可以在优化的手术和医疗条件下实现良好的长期预后,但对于某些患有患有相关遗传异常的VSD的患者,预后不令人满意(van Nisselrooij et al。,2020; Mone等,2021)。因此,遗传异常的产前定义在VSD的诊断中非常重要,因为它可以提供更准确,更适当的遗传咨询,这可能会影响父母在持续/终止怀孕,产前监测和围产期护理方面的决策。胎儿结构异常是侵入性产前基因检测的指标(Fu等,2022)。具有结构异常的胎儿具有较高的非整倍性,染色体重排和序列变化的发生率(Fu等,2018)。常规的核型分析是一种鉴定染色体重排的有效技术,诊断率在5.4%至15.5%之间(Hanna等,1996; Beke等,2005)。但是,G带核型分析的分辨率很低,并且耗时且艰辛。CMA具有很高的分辨率,并且时间很短。在基于阵列的分子细胞遗传学技术(例如CMA)发展后,小基因组缺失和重复的检测率增加了10%,无法通过标准结构畸形胎儿核型分析来检测(Hillman等,2013; Liao等,2014; Liao等,2014)。在患有产后和产前CHD的患者中,它可以识别非整倍性,染色体重排和拷贝数变化(CNV)。在7% - 36%的冠心病患者中检测到致病性CNV(Fu等,2018; Wang等,2018)。对于大多数结构异常的胎儿,在基因检测之前尚不清楚异常的根本原因。作为下一代测序(NGS)的显着进步,外显子组测序(ES)是评估产后患者的有效工具。这种检测技术用于产前诊断(Best等,2018)。In addition to improving diagnostic rates, using ES for assessing a large sample size can analyze single nucleotide variations (SNVs)/ insertions and deletions (indels) in the gene coding regions and help in the identi fi cation of novel pathogenic genes or novel variants in well-known genes in VSD patients ( Sifrim et al., 2016 ; Jin et al., 2017 ; Fu et al., 2018; Lord et al。,2019年;三项广泛的研究表明,ES可以为异常超声发现,正常核型和阴性CMA结果提供诊断率提高8.5% - 11.6%(Lord等,2019; Petrovski et al。,2019; Fu等,202222)。最近对产前CHD的研究表明,ES的诊断率为20%(6/30)(Westphal等,2019)。In the present research, we used CMA and ES to assess the detection ef fi ciency of fetuses with VSD at the chromosomal (aneuploidy), sub-chromosomal (microdeletion/ microduplication), and single gene (point variants) levels and evaluated perinatal prognosis to facilitate more accurate genetic counseling in clinical practice.
IEA 生物能源任务 39 已于 2007 年、2009 年、2014 年、2017 年、2019 年和 2021 年发布了六期实施议程报告。本期(2023 年)更新了成员国生物燃料生产和使用的进展情况,以及任务 39 国为推广低碳强度 (CI) 生物燃料而采用的政策。该报告的一个重要“要点”是,需要有效的生物燃料政策来刺激生物燃料市场的增长。例如,授权仍然是通过建立市场和促进市场进入而成功用于鼓励生物燃料的生产和使用的重要政策工具。然而,到目前为止,大多数生物燃料政策都侧重于推广“第一代/传统”生物燃料,如乙醇和生物柴油。虽然这些类型的生物燃料目前占据市场主导地位,但可再生柴油 (RD,也称为 HVO) 和可持续航空燃料 (SAF)/生物喷气燃料等“直接替代”生物燃料的生产和使用一直在增加。正如更详细的报道,“市场拉动”政策在支持成熟技术方面发挥了重要作用,例如乙醇和生物柴油的生产和使用。虽然这些政策也有助于开发可再生柴油等直接替代生物燃料,但低碳燃料标准 (LCFS) 等其他政策越来越强调生物燃料的 CI(而不是 10% 乙醇、2% 生物柴油等体积目标)。生物燃料的 CI 是更新报告的一个关键组成部分,因为使用生物燃料的主要原因之一是减少与运输相关的温室气体 (GHG) 排放。特别是,“难以电气化”的长途运输部门,如航空、海运、卡车运输和世界大部分铁路,倾向于使用直接替代生物燃料。通过使用低 CI、可替代的生物燃料,该行业可以利用大部分现有基础设施/供应链,同时减少与长途运输相关的碳排放。如报告中所述,加州低碳燃料标准 (CA-LCFS) 等政策要求各种实体(通常是燃料和能源供应商)逐步减少其销售燃料的温室气体排放。CA-LCFS 评估燃料生产、运输和消费产生的排放,供应商“营销”低 CI 燃料(如“绿色”氢气、“绿色”甲烷等),并使用信用交易系统来提高灵活性。值得注意的是,事实证明,低碳燃料标准类型的政策还可以促进乙醇等“传统”生物燃料的生产和使用,同时促进 RD/SAF 等可替代生物燃料的增长。正如完整报告所详述的那样,加利福尼亚州、俄勒冈州和华盛顿州、不列颠哥伦比亚省(BC)等地区,以及加拿大(清洁燃料法规)、巴西(RenovaBio)和欧盟(Fit-for-55)等国家,都已经实施或正在考虑实施类似措施。如下所述,美国《通货膨胀削减法案》(IRA)等政策产生了重大影响,因为它们有助于促进 SAF、“绿色”氢气和可再生天然气 (RNG) 等低 CI 燃料的生产和使用。还应注意,在许多情况下,这些联邦政策可以与各州的生物能源和生物燃料税收抵免“叠加”。总之,“正确/有利”的政策对于生物燃料的持续增长仍然至关重要。如下所述,对生物燃料 CI 的日益关注需要使用生命周期分析 (LCA) 模型。然而,使用不同的 LCA 模型(即 GREET、GHGenius、VSR 等)以及这些模型中的各种假设、边界、默认值等导致的变化是 IEA 生物能源任务 39 中正在进行的“讨论/项目”之一。
如今,人们对微生物燃料电池产生了浓厚的兴趣,因为其中可以使用不同的基质来产生电能。为了找到替代品并贡献环保技术,本研究通过实验室规模的微生物燃料电池,使用沙雷氏菌和红酵母作为燃料源。制造了一个带有空气阴极的单室微生物燃料电池,以铜箔和石墨板分别作为阳极和阴极电极。为了表征电池,在室温(18±2.2 ◦C)下测量了 30 天的电压、电流、pH 值和电导率等物理化学参数。对于含有细菌和酵母的 MFC,可以产生峰值电压和电流值 0.53±0.01 V 和 0.55±0.02 V,电流值 1.76±0.16 mA 和 1.52±0.02 mA。此外,观察到酸性操作 pH 值,其电导率峰值约为 242 mS/cm。最后,这项工作证明了微生物在产生电流方面具有巨大的潜力,为发电提供了一种新的、有前途的方法© 2023 秘鲁自治大学。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
生物燃料生产方法。这项技术不仅提供了环境利益,而且还有助于能源安全,农村发展和经济稳定。但是,解决法规,道德和安全问题至关重要,以确保对基因工程细菌进行负责任,安全地部署,以追求可再生能源解决方案。随着科学和技术的继续发展,我们可以期待更高效,更可持续的生物燃料生产过程,这些过程将在缓解气候变化并减少我们对化石燃料的依赖方面发挥关键作用。