气候变化要求利用所有可再生能源资源(例如生物质的生物能源)进行能源过渡。但是,在社会上辩论了生物质的使用,公众接受度很低或缺乏。这项基于调查的研究首次证明了对(a)用于产生生物能源的生物量原料的类型,以及(b)生物能源对能源过渡有效的有效性的看法。一个调查的小插图实验(有409名荷兰参与者)表明,公众接受生物质原料“木材”和“能量作物”明显低于对生物营养的“有机废物”和“肥料”的接受。这些结果表明,在公众接受生物能源的情况下,应在未来的研究和沟通中更仔细地考虑和指定生物质原料类型。主题编码和自举调解分析确定了生物能量在能量转变中的感知有效性(即,介导)接受变量。随后的消息框架沟通实验(与414名荷兰参与者)表明,强调生物质原料作为废物利用形式是一种框架,有助于增加公众对生物能源的接受。废物利用率框架显着提高了对生物能源有效性的看法,这有助于两个较少接受的生物量原料的能量过渡。强调生物质原料类型作为一种废物处理形式可以改善对生物能源的战略沟通,并在向更可持续的能源体系的过渡过程中公开接受生物能源。
摘要:全球能源系统正在过渡。它正试图到2050年到达零零温室气体排放。系统性变化意味着生物能源的作用将改变。生物能源对能源系统做出灵活贡献的潜力是实现全球排放野心的关键以及低碳能源系统和经济的功能。由于可持续可用的生物量资源的数量是有限的,这定义了生物能源对低碳能源系统的贡献,并在生物量可以提供的不同可能的能源和气候系统服务之间找到平衡(理想情况下是协同效应)将非常重要。公认的系统服务包括生物能源植物的灵活操作,以整合可变的可再生能源并提供负二氧化碳(CO 2)排放。对生物能量链的灵活运行,具有碳捕获和利用的生物能源以及具有可再生氢的价值链的协同作用的兴趣。本文的目的是根据国际能源机构(IEA)生物能源技术合作计划的工作44灵活的生物能源和系统集成,并提供一些实际示例。本文还提供了不同的生物能源系统服务,并考虑了它们的定义和互动,因为这在能源系统设计中很重要。灵活生物能源的定义表明,生物能源的灵活性规定远远超出了提供电力部门短期灵活性的传统定义。
简介 2 I. 数据收集 3 限制或控制对训练数据的访问 3 大型语言模型 3 生物设计工具 4 II. 模型开发 5 控制对计算基础设施的访问 5 大型语言模型 5 生物设计工具 6 纳入负责任的训练方法 6 大型语言模型 6 生物设计工具 7 III. 模型发布前的防护措施 8 实施内置保护措施 8 大型语言模型 8 生物设计工具 9 自动化科学 9 进行模型评估 10 大型语言模型 10 生物设计工具 11 自动化科学 11 IV. 模型发布后的防护措施 12 控制和监控访问 12 大型语言模型 12 生物设计工具 13 V. 数字物理接口的安全性 14 保障核酸合成筛选 14 结论 15
图 2.净耗电量,太瓦时(IEA,《世界能源展望》,2023 年)(联邦网络局,2022 年)(弗劳恩霍夫系统与创新研究所 ISI,2023 年)(能源转型,2023 年)(dena 主导研究,2021 年)(网络发展计划,2024 年)
灵活的生物能源在许多不同的应用领域得到考虑,并且在各国的优先顺序不同。使用灵活的原料和提供灵活的电力最为重要:日常和季节性灵活性被认为是系统整合的最重要因素。此外,资源供应的灵活性也已得到充分证实:生物能源载体的储存和国际贸易主要用于延长冬季需求的满足时间。在氢气或二氧化碳的灵活生产以及能源和非能源产品的多联产方面,更多国家认为需要在辩论中更好地考虑这些主题,并同时将它们作为研究和示范的主题。在这些早期概念之间,灵活的生物能源和 BECCS 可以看作是一个新兴主题,因为它已在许多能源战略中得到考虑。
• 农业服务公司 • Anaergia 公司 • Anaergia 服务有限责任公司 • Anaergia 技术有限责任公司 • 加州生物能源协会 • CalRecycle • 加州卫生机构协会 • 阿纳海姆市,公共事业部 • 洛杉矶市 • 里亚托市 • 圣贝纳迪诺县社区行动伙伴关系 • 洛杉矶县,公用事业工程部 • Delta Diablo • 前州议员 Rocky J. Chavez • GC Green • High Desert Second Chance • Momentum • 奥兰治县卫生区 • Oro Loma 卫生区 • 共和服务公司 • 圣贝纳迪诺县劳动力发展公司 • 南湾畔废物管理局 • 南加州天然气公司 • 西南天然气公司 • 第 47 区州议员 - Eloise Gomez Reyes • 第 76 区州议员 – Tasha Boerner Horvarth • 第 20 区州参议员 - Connie M. Levya • 废物管理 • WM Lyles,Co.
生物能源经济涉及生物质到生物能源供应链中的多个工业部门——从生产生物质材料的农业和林业产业到生物质燃料、产品和电力的制造商和分销商,再到最终的终端用户市场。本报告的广度侧重于生物质生产后发生的活动。该报告汇编和整合了信息,以提供 2022 年底的生物能源行业状况,并包括过去 10 年的数据以显示随时间变化的趋势。它还强调了影响生物能源行业发展的一些关键能源和监管驱动因素。这些信息旨在供对生物能源行业发展感兴趣的技术开发人员、政策制定者和其他生物能源利益相关者使用。
Lee, J., Kim, S., You, S. 和 Park, Y.-K. (2023) 通过木质纤维素生物质为基础的综合可再生能源系统的热化学转化产生生物能源。《可再生和可持续能源评论》,178,113240。(doi:10.1016/j.rser.2023.113240)这是根据知识共享许可存放在此处的作品的作者版本:https://creativecommons.org/licenses/by-nc-nd/4.0/。如果您想引用,建议您查阅出版商版本:https://doi.org/10.1016/j.rser.2023.113240 https://eprints.gla.ac.uk/293947/ 存放日期:2023 年 3 月 8 日
使用来自木质纤维素生物量(LCB)的润滑性微生物脂质生物填料生成发酵生物能源(即生物柴油)代表了创新的第二代燃料生产技术。这些脂质主要是细胞内甘油三酸酯,在预处理和LCB的酶水解后,通过发酵中糖的代谢积累。This review investigates the recent advances in the microbial lipid production from LCB, focusing on the factors influencing the lead microbial lipid producers, different pretreatment methods ( i.e., physical, chemical, biological, and combined pretreatment), enzymatic hydrolysis approaches, novel bioprocessing strategies ( i.e., microbes-specific and fermentation model specific), and engineering techniques of the油脂微生物(即遗传和代谢改变)。这项研究表明,按照各种组合预处理方法,将润滑脂酵母掺入系统(称为分离的水解和脂质产生)时,可以合成更高量的脂质。有趣的是,CRISPR被发现是在遗传和代谢上以增加脂质合成的最合适的微生物的最合适方法。该研究还探讨了发酵脂质生产的经济可行策略,应对相关挑战,并概述了未来的方向,包括全面的技术经济和生命周期评估。本评论为LCB提供了对微生物脂质生产的宝贵见解,强调了通过正在进行的研究和开发工作进行大量技术和环境增强的潜力。©2024 Alpha Creation Enterprise CC by 4.0