3.1子宫内膜癌从子宫内壁开始。症状可能包括阴道出血,骨盆疼痛,意外的体重减轻,恶心和疲劳。大约23%的子宫内膜癌患者的亚型具有较高的微卫星不稳定性(MSI-H)或DNA不匹配修复(DMMR)缺乏生物标志物。子宫内膜癌对预期寿命和生活质量都有重大影响。患有晚期或复发性子宫内膜癌的患者(这意味着癌症已经超过子宫超出了子宫或以前的治疗后回来)的预后不佳。只有15%在第4阶段诊断出5年或更长时间。影响不仅限于身体健康,而且还限于人们及其家人的心理健康和福祉。患者专家强调,此阶段有效的治疗选择有限,使人们感到沮丧,绝望和抛弃。他们强调了缺乏
同时,银行业经历了频繁的网络攻击,基于周边的安全模型不再足以确保不断发展的混合动力劳动力。金融服务组织需要平衡变得更加敏捷和响应挑战的市场状况,同时保持对客户和交易信息的强大保护,以保持其系统受到保护并满足全球审计要求。
摘要。针对 COVID-19 等流行病的生物医学仪器和管理平台正在迅速采用支持物联网的医疗设备 (IoMT)。量子密钥分发 (QKD) 也被认为是应用顶级互联网战略的基本原理、工具、方法和思想,特别是在医疗保健和医疗领域。然而,使用 QKD 的高效端到端验证系统解决了协议的安全问题并简化了整个流程。因此,尽管成本可能会增加和出现错误的可能性,但必须实施一种新系统,使数据传输顺畅而不损害其完整性。当存在额外的传感器和设备并且需要更多能量来处理它们时,可以使用更有效的算法来降低功耗。
•与其他治疗方法相比,它的工作效果如何?•风险或副作用是什么?它们的可能性有多大?•治疗将如何影响我的日常生活?•如果治疗不起作用会发生什么?•如果我不想接受治疗会发生什么?是否还有其他治疗
1。引言具有越来越多的技术在建模和仿真领域可用,激光扫描仪使用户能够重新创建真实对象和/或环境的3D模型。这样的结果允许在虚拟和建设性仿真中使用3D模型,目的是进行何种分析以及支持基于仿真的设计和系统采集。对象以非常高的精度复制(即从120 m检测点少于1 mm的错误率),然后将它们放入模拟场景中。如今,激光扫描仪是多功能且用户友好的工具,旨在在3D型号的准确性及其外观之间进行良好的权衡,作为模拟场景的一部分。这是通过与激光扫描仪一起工作的相机拍摄的图片获得的。在整个论文中所解释的过程中,获得最终结果的过程非常简单,很快,很少有运营商的参与度。本文提出的应用程序示例与从3D陆地激光(北约罗马北约建模与模拟中心的财产)进行的意大利军队创建了称为“ Freccia”的军用装甲车。车辆的整体尺寸为8.6 m,宽度为2,9 m,高度为3 m。作为任何军用车辆,Freccia车辆非常复杂,包括许多相关结构
肺移植(LTX)是目前针对终末期肺部疾病患者的护理中流托。根据联合器官共享网络(UNOS),2022年在美国进行了2,692次肺移植。尽管进行了肺部移植的数量,但同种异体移植物仍然是肾脏,肝脏和心脏中最不耐用的固体器官(1)。原发性移植功能障碍(PGD)是在围手术期的直接围手术期间肺部同种异体功能障碍的主要原因,载有10-30%的患者的发病率可观察到死亡率高达40%的患者(2,3)。尽管PGD发展背后的确切病理生理学尚无共识,但缺血 - 再灌注损伤通常被认为是其发育的主要因素,原因是多种原因(4-6)。首先,肺是一个独特的器官,带有双血
储存器计算 (RC) [1, 2] 是一种循环神经网络,近年来因其训练成本低、可通过专用电路 [3, 4] 和物理 RC [5, 6] 在硬件上实现而备受关注。RC 由储存器部分和读出部分组成,储存器部分接收时间序列输入并将其非线性转换为高维空间以表示输入的时空模式,读出部分从储存器部分拾取一些模式来分析输入并生成输出。RC 的主要优势是除读出部分之外的权重连接都是固定的。因此,与深度神经网络相比,其训练所需的数据量更少,计算成本更低。因此,RC 适用于计算资源有限且无需云计算即可执行训练的边缘 AI 系统。 RC 的读出大多由线性模型(单层感知器)实现,因此,读出的适应训练数据的能力有限。为了增强 RC 的训练能力,我们提出了一个具有多个读出的 RC 模型,该模型将一个读出的训练分散,以便每个读出可以专注于特定类型的训练数据。该方法可以看作是一种集成学习,用于增强 RC 泛化性能。简单地增加读出的数量对于边缘 AI 系统来说是低效的,因为它会消耗系统中有限的内存资源。本研究引入了一种自组织函数,它能够使用
NTPC 以外的 CGS ( 1) 1256.71 155.44 425.97 581.41 3.39 1.24 4.63 NTPC (SR) Ramagundam St.I&II 727.16 58.59 300.82 359.41 4.14 0.81 4.94
通过虚拟模型为个性化医疗保健提供机会,DTS代表了精密健康和个性化医学领域的范式转变。在医疗保健中,DTS可以定义为物理实体(细胞,组织,器官,患者和卫生系统)的高度详细和动态的虚拟复制品,从而再现了物理对应物的结构,行为和背景(Qi等人,2021年)。这些虚拟的对应物不断使用实时数据进行更新,以模拟和预测健康结果,从而优化了临床决策(Fuller等,2020)。dts实时整合来自多个来源的数据,以模拟健康结果,并可以通过实现更精确,及时,及时,及时的临床干预措施,最终提高患者治疗效率,从而适应每个患者,从而增加主动的医疗保健管理。
摘要 在胸部 X 光 (CXR) 诊断领域,现有研究通常仅侧重于确定放射科医生的注视点,通常是通过检测、分割或分类等任务。然而,这些方法通常被设计为黑盒模型,缺乏可解释性。在本文中,我们介绍了可解释人工智能 (I-AI),这是一种新颖的统一可控可解释流程,用于解码放射科医生在 CXR 诊断中的高度关注度。我们的 I-AI 解决了三个关键问题:放射科医生注视的位置、他们在特定区域关注的时间以及他们诊断出的发现。通过捕捉放射科医生凝视的强度,我们提供了一个统一的解决方案,可深入了解放射学解释背后的认知过程。与当前依赖黑盒机器学习模型的方法不同,这些方法在诊断过程中很容易从整个输入图像中提取错误信息,而我们通过有效地屏蔽不相关的信息来解决这个问题。我们提出的 I-AI 利用视觉语言模型,可以精确控制解释过程,同时确保排除不相关的特征。为了训练我们的 I-AI 模型,我们利用眼球注视数据集来提取解剖注视信息并生成地面真实热图。通过大量实验,我们证明了我们方法的有效性。我们展示了旨在模仿放射科医生注意力的注意力热图,它编码了充分和相关的信息,仅使用 CXR 的一部分即可实现准确的分类任务。代码、检查点和数据位于 https://github.com/UARK-AICV/IAI。1. 简介
