摘要:叶酸受体-α(FR-α)在许多上皮癌中过度表达,包括卵巢癌、子宫癌、肾癌、乳腺癌、肺癌、结肠癌和前列腺癌,但在肾脏、唾液腺、脉络丛和胎盘等正常组织中表达有限。因此,FR-α已成为向FR阳性肿瘤输送治疗剂和成像剂的有希望的靶点。已经开发了一系列基于叶酸的PET(正电子发射断层扫描)放射性药物,用于选择性靶向FR阳性恶性肿瘤。本综述概述了迄今为止关于叶酸衍生的PET放射性结合物的设计、放射合成和用于靶向FR阳性肿瘤的效用的研究进展。本文主要介绍了用氟-18(t 1 / 2 = 109.8 分钟)和镓-68(t 1 / 2 = 67.7 分钟)标记的叶酸放射性结合物的结果,但也讨论了用“外来”和新 PET 放射性核素标记的叶酸,例如铜-64(t 1 / 2 = 12.7 小时)、铽-152(t 1 / 2 = 17.5 小时)、钪-44(t 1 / 2 = 3.97 小时)、钴-55(t 1 / 2 = 17.5 小时)和锆-89(t 1 / 2 = 78.4 小时)。对于肿瘤成像,迄今为止报道的 PET 放射性标记叶酸中,除了 [ 18 F]AzaFol 之外,没有一种完成了从实验室到临床的旅程,该药物在一项多中心首次人体试验中成功用于转移性卵巢癌和肺癌患者。然而,在不久的将来,我们预计会有更多基于叶酸的 PET 放射性药物的临床试验,因为临床对成像和 FR 相关恶性肿瘤的治疗越来越感兴趣。
对大脑神经活动进行多通道电记录是一种越来越有效的方法,它揭示了神经通信、计算和假肢的新方面。然而,虽然传统电子产品中平面硅基 CMOS 器件的规模迅速扩大,但神经接口器件却未能跟上步伐。在这里,我们提出了一种将硅基芯片与三维微线阵列连接起来的新策略,为快速发展的电子产品和高密度神经接口提供连接。该系统由一束微线组成,这些微线与大规模微电极阵列(如相机芯片)配对。该系统具有出色的记录性能,通过在清醒运动小鼠的孤立视网膜和运动皮层或纹状体中进行的单个单元和局部场电位记录得到了证明。模块化设计使各种类型和尺寸的微线能够与不同类型的像素阵列集成,将商业多路复用、数字化和数据采集硬件的快速发展与三维神经接口连接在一起。
增材制造技术提供了在局部层面创建和修改材料成分和结构的各种可能性,但往往容易出现不良缺陷和不均匀性。本贡献利用这些缺陷在金属中生成材料固有的隐藏代码和水印,用于认证和防伪应用。通过受控和随机的工艺变化,使用激光粉末床熔合 (L-PBF) 和激光定向能量沉积 (L-DED) 工艺产生了可以通过涡流设备读取和认证的唯一代码。提出了两种方法:首先,使用 L-PBF 制造具有确定形状的体积多孔结构。其次,通过交替工艺参数的 L-DED 制造涂层,导致磁导率的局部偏差。这种非确定性编码方法产生了一种独特的材料结构,可在涡流测量中触发高信号幅度。由于熔池动力学不可复制,伪造变得不可能。统计假设检验证明,该系统能够以 5 亿分之一的确定性防止错误接受或拒绝代码。一种新型锁定系统的低成本设置表明,可以在一秒钟内可靠地感知代码。
卷积在 CNN 操作中占主导地位,占运行时间的 90% 以上。尽管这些操作可以利用高度并行的计算范例,但由于伴随的带宽要求,吞吐量可能无法相应扩展,并且由于数据移动可能比计算更昂贵,因此能耗仍然很高。
● 废弃的煤矿经常因缺乏维护和地下水泄漏而被淹没 ● 被淹没的煤矿中的水经常受到污染,不能用于其他用途 ● 浮动光伏太阳能发电场可以放置在湖泊上以产生能源 ● 水冷却太阳能电池板,提高效率 ● 减轻 NIMBY 的影响和附近居民的反对 ● 减少湖面蒸发 挑战
免责声明 不能替代专业建议 本报告主要旨在帮助加拿大卫生系统领导者和政策制定者做出明智的决定,从而提高医疗服务的质量。虽然患者和其他人可以使用本报告,但本报告仅供参考和教育之用。本报告不应被用作对特定患者护理的临床判断或任何决策过程中的其他专业判断的替代,也不应被用作专业医疗建议的替代。 责任 pCODR 对所披露的任何信息、药物、疗法、治疗、产品、流程或服务的准确性、完整性或实用性不承担任何法律责任。信息按“原样”提供,建议您在依赖之前自行验证并咨询医学专家。您不应要求 pCODR 对您如何使用本报告中提供的任何信息负责。pCODR 生成的报告由基于制药商、肿瘤组织和其他来源提供的信息的解释、分析和意见组成。pCODR 对此类解释、分析和意见的使用不承担任何责任。根据 pCODR 的基础文件,pCODR 提供的任何调查结果对任何组织(包括资助机构)均不具有约束力。pCODR 特此声明,对于使用 pCODR 生成的任何报告,不承担任何责任(为进一步明确,“使用”包括但不限于资助机构或其他组织决定遵循或忽略 pCODR 报告中提供的任何解释、分析或意见)。资金 加拿大肿瘤药物审查由各省和地区共同资助,魁北克省除外,目前魁北克省不参与 pCODR。
储存器计算 (RC) [1, 2] 是一种循环神经网络,近年来因其训练成本低、可通过专用电路 [3, 4] 和物理 RC [5, 6] 在硬件上实现而备受关注。RC 由储存器部分和读出部分组成,储存器部分接收时间序列输入并将其非线性转换为高维空间以表示输入的时空模式,读出部分从储存器部分拾取一些模式来分析输入并生成输出。RC 的主要优势是除读出部分之外的权重连接都是固定的。因此,与深度神经网络相比,其训练所需的数据量更少,计算成本更低。因此,RC 适用于计算资源有限且无需云计算即可执行训练的边缘 AI 系统。 RC 的读出大多由线性模型(单层感知器)实现,因此,读出的适应训练数据的能力有限。为了增强 RC 的训练能力,我们提出了一个具有多个读出的 RC 模型,该模型将一个读出的训练分散,以便每个读出可以专注于特定类型的训练数据。该方法可以看作是一种集成学习,用于增强 RC 泛化性能。简单地增加读出的数量对于边缘 AI 系统来说是低效的,因为它会消耗系统中有限的内存资源。本研究引入了一种自组织函数,它能够使用
摘要 :增材制造 (AM) 是一项尖端技术,可提供高达 100% 的材料效率和显著的重量减轻,这将对飞机燃料消耗产生积极影响,并且具有很高的设计自由度。因此,许多航空航天公司都在考虑实施 AM,这要归功于这些好处。因此,本研究的目的是帮助航空航天组织在不同的 AM 技术中进行选择。为此,通过半结构化访谈收集了 (8) 位 AM 领域专家的原始数据,并与二手数据进行交叉引用,以确定在选择用于航空航天应用的 AM 设备时需要考虑的关键因素。专家们强调了四种 AM 技术:激光粉末床熔合 (LPBF)、电子束粉末床熔合 (EBPBF)、线弧 AM (WAAM) 和激光金属沉积 (LMD),认为它们最适合航空航天应用。本研究的主要成果是开发了一个比较框架,帮助公司根据其主要业务或特定应用选择 AM 技术。
