如何引用这篇文章 - 美国心理学会 (APA) Santos, GC, Barboza, F., Veiga, ACP, & Gomes, K 。 (2024 年 7 月/9 月)。利用人工智能进行投资组合优化
◉ 学生可能不知道哪些工具算作人工智能 ◉ 明确说明你欢迎他们使用哪些工具用于哪些目的 ◉ 详细讨论你的政策的“原因”以及它与课程目标的关系 ◉ 让学生写自己的人工智能陈述(参见 Cate Denial 的帖子:ChatGPT 和后续所有内容)
在现代技术时代,聊天机器人是新一代对话服务的重要方面。聊天机器人系统是一种使用自然语言与用户交互的软件程序。聊天机器人是一个虚拟个体,可以使用交互式文本能力与任何人进行有效讨论。最近,聊天机器人作为人机对话媒介的发展取得了长足的进步。机器学习和人工智能聊天机器人系统的目的是模拟人类对话;可能是通过文本或语音。聊天机器人程序通过自然语言处理理解一种或多种人类语言。聊天机器人结构集成了语言模型和计算算法来模拟非正式聊天通信,涵盖了大量的自然语言处理技术。本文探讨了聊天机器人可能有用的其他应用,例如机器对话系统、虚拟代理、对话系统、信息检索、商业、电信、银行、医疗、客户呼叫中心和电子商务。还概述了基于云的聊天机器人技术以及聊天机器人的编程和当前和未来聊天机器人时代的编程挑战。
马里兰州克朗斯维尔:今天,马里兰州信息技术部 (DoIT) 和马里兰州人工智能分部宣布,他们已向马里兰州议会提交了人工智能支持战略和人工智能研究路线图(AI 路线图)。该路线图列出了该州将实施的 5 部分战略,以加快在全州安全实施人工智能和机器学习技术。它还概述了该州将在 12 个关键领域开展的具体研究,包括促进经济发展、提高州劳动力的生产率以及为当地学校系统制定政策。“生成人工智能正以前所未有的速度发展,可能影响马里兰州人民生活的几乎每个方面,”DoIT 部长兼人工智能分部主席 Katie Savage 表示。“人工智能路线图为马里兰州在 2025 年的发展规划了路线图,帮助其加快人工智能采用的步伐,同时考虑到马里兰州独特的资产、机遇和风险。我们准备以切实可行的方式采用这项技术,使我们的国家更加安全、更具竞争力、更高效。”
在快速发展的人工智能 (AI) 领域,组织正在积极探索其变革能力。人工智能不可抗拒地挂在每个人嘴边——学者、公司、政策制定者和政府。可以说,人工智能越来越重要,并且越来越依赖我们生活的方方面面,但更广泛地说,它对社会的影响更大。特别是,企业对人工智能的兴趣已经深深地影响了投资决策,尽管必须注意,这并不是一个完全新的现象,至少当我们试图将商业智能的起源历史化时,它早在生成和分析人工智能出现之前就已扎根。此外,我们还看到政治实体(在这个意义上是国家)将人工智能纳入其投资战略和监管框架的能力可能带来的结果。同样,可以说,人工智能给私营和公共部门领域带来了不可否认的变革性影响,并且可能带来这种影响。
一份新报告称,NDIA 正迅速成长为战略领导者,在云计算、量子计算和人工智能超级计算领域取得了令人兴奋的创新。这并不奇怪,因为超过 90% 的印度企业已经在使用 AI/GenAI 技术。然而,挑战在于实施水平,因为只有 2% 的公司正在广泛整合这些技术,德勤技术趋势 2024:印度视角报告指出。GenAI 确实有潜力加速印度的数字化转型,企业纷纷战略性地投资新时代技术,通过适应不断变化的市场动态来实现利益最大化。如果 2023 年对 GenAI 的需求和兴趣显著,那么今年预计将专注于确定最佳投资领域和评估过去的投资。
研究人员可以使用许多免费和付费的 AI 拨款申请书写工具。目前,使用生成式 AI 工具来协助拨款申请书写过程并不被禁止。例如,这些工具可能有助于生成提案摘要、编辑草稿或编写提案的特定部分。在 2023 年 12 月的通知中,NSF 鼓励研究人员指出何时以及如何使用 AI 来创建他们的提案。PI 应该注意,使用这些工具共享知识产权会带来风险。将机密信息输入生成式 AI(即使是新颖的想法)将被视为出于专利目的或根据保密协议的公开披露,从而导致专利权的丧失或违反我们的法律义务。所有生成式 AI 输出都应检查其准确性。你永远不应该依赖 AI 是正确的!
过去几年,此类电话数量不断增加,因为这项技术现在有可能通过模仿名人、政治候选人和近亲的声音,用错误信息迷惑消费者。虽然目前州检察长可以针对不受欢迎的人工智能语音生成的自动电话的结果(例如他们试图实施的诈骗或欺诈)进行打击,但这一行动现在使使用人工智能生成这些自动电话的声音本身成为非法行为,扩大了州执法机构追究这些肇事者责任的法律途径。
随着人工智能的不断发展,其推动科学发现的能力无疑将不断扩大,从而开辟新的研究领域,并帮助解决人类面临的一些最紧迫的挑战。然而,成功利用人工智能促进科学进步可能具有挑战性。存在经济障碍,例如计算资源有限和资金匮乏。(即使对于大型机构而言,构建和利用人工智能模型的成本也高得令人望而却步。)7 此外,缺乏相关数据集,尤其是包容性且无偏见的数据集,可能会阻止研究人员在某些领域利用人工智能,而使用低质量数据集可能会导致在这些数据集上训练的人工智能模型出现不准确且可能具有歧视性的行为。跨学科研究人员的稀缺也会抑制人工智能在科学上的潜力。此外,还存在技术障碍,例如某些人工智能模型难以扩展以及它们分析某些大型数据集的能力有限。在目前的状态下,人工智能系统无法完全理解 DNA 或重力等基本概念。8
尽管拉丁美洲和加勒比地区 (LAC) 在过去 20 年里没有发生过国家间武装冲突,但暴力、政变、侵犯人权以及非法武装团体的存在继续对该地区的和平与安全构成重大挑战。随着联合国将注意力集中在为所有人建立一个开放、自由、安全和以人为本的数字化未来,包括最近制定的全球数字契约 (GDC) ,拉丁美洲和加勒比地区的和平建设者正在开拓性地探索如何利用人工智能 (AI) 和开源情报 (OSINT) 以本地化、包容和冲突敏感的方式支持建设和平和预防冲突 1 。 ___________________________________________________________________________
