CoV-2,在感染期间观察到淋巴细胞减少,CD4 + 和 CD8 + T 细胞丢失,IL6、IL10、IL2R、TNFa 和 CCL2 过度产生 [16]。细胞因子风暴对呼吸系统的破坏性影响已经为人所知。这种炎症状态对神经系统的影响鲜为人知。与高水平细胞因子/趋化因子相关的慢性神经炎症与某些神经退行性疾病(多发性硬化症、帕金森病、阿尔茨海默病、阿尔茨海默病、亨廷顿病或肌萎缩侧索硬化症)的病理生理有关 [17]。在 AD 的情况下,有描述称小胶质细胞在促炎细胞因子(主要是 IL1 或 IL6)存在下失去降解 Aβ 蛋白的能力,导致致病
18以色列重股东卡普兰医学中心的微生物学部,19号特拉维夫大学公共卫生,以色列特拉维夫
广州大学的实验中心,中国广州B,上海上海上海大学生物医学工程学院。 Zhangjiang Lab,上海,中国,201204电话。 :+86 21 38176043电子邮件:hanzhang.bit@gmail.com(H。Zhang),上海上海上海大学生物医学工程学院,中国,2011年。 :+86 21 20685265传真:+86 21 20685265电子邮件:dinggang.shen@gmail.com(D。Shen)摘要。 大脑中淀粉样蛋白-β(Aβ)沉积的检测为阿尔茨海默氏病临床诊断(AD)提供了关键证据。 然而,当前基于宠物的大脑Aβ检查的效率遭受了粗糙的,基于视觉检查的双级分层以及高扫描成本和风险。 在这项工作中,我们探讨了使用非侵入性功能磁共振成像(fMRI)在AD连续体中使用脑网络上的图形学习来预测Aβ-PET表型的可行性。 首先,通过聚类来鉴定三个全脑Aβ-PET表型,并研究了它们与临床表型的关联。 第二,使用静止状态fMRI构建常规功能连通性(FC)网络,并通过图形卷积网络(GCN)学习了网络拓扑结构,以预测此类Aβ-PET表型。 这可能是一种有前途的技术,用于对AD的高通量筛查,成本和限制更少。广州大学的实验中心,中国广州B,上海上海上海大学生物医学工程学院。 Zhangjiang Lab,上海,中国,201204电话。:+86 21 38176043电子邮件:hanzhang.bit@gmail.com(H。Zhang),上海上海上海大学生物医学工程学院,中国,2011年。:+86 21 20685265传真:+86 21 20685265电子邮件:dinggang.shen@gmail.com(D。Shen)摘要。大脑中淀粉样蛋白-β(Aβ)沉积的检测为阿尔茨海默氏病临床诊断(AD)提供了关键证据。然而,当前基于宠物的大脑Aβ检查的效率遭受了粗糙的,基于视觉检查的双级分层以及高扫描成本和风险。在这项工作中,我们探讨了使用非侵入性功能磁共振成像(fMRI)在AD连续体中使用脑网络上的图形学习来预测Aβ-PET表型的可行性。首先,通过聚类来鉴定三个全脑Aβ-PET表型,并研究了它们与临床表型的关联。第二,使用静止状态fMRI构建常规功能连通性(FC)网络,并通过图形卷积网络(GCN)学习了网络拓扑结构,以预测此类Aβ-PET表型。这可能是一种有前途的技术,用于对AD的高通量筛查,成本和限制更少。对来自AD连续的258个样品的Aβ-PET表型预测的实验表明,我们的算法达到了较高的fMRI-to-to-pet预测准确性(78.8%)。结果表明,AD连续体中存在可区分的脑Aβ沉积表型,以及使用人工智能和非侵入性脑成像技术来近似基于PET的评估的可行性。关键字:功能连通性,大脑网络,淀粉样蛋白β,PET,图形卷积网络。
用于空间领域感知应用的加速 AI 驱动大气预测 丹尼·费尔顿 诺斯罗普·格鲁曼公司 玛丽·艾伦·克拉多克、希瑟·凯利、兰德尔·J·阿利斯、埃里克·佩奇、杜安·阿普林 诺斯罗普·格鲁曼公司 摘要 太空激光和监视应用经常受到大气效应的影响。气溶胶、云和光学湍流引起的大气衰减和扭曲会产生有害影响,从而对任务结果产生负面影响。2019 年 AMOS 会议上简要介绍的一篇论文介绍了 2017 年在哈莱阿卡拉峰安装的地面仪器。这些仪器仍在积极收集数据,它们正在提供前所未有的空间环境实时表征,包括精确的大气传输损耗。虽然实时测量是理解和表征空间环境的第一步,但仅靠它们是不够的。为了优化任务规划,许多应用都需要对空间环境进行准确的短期大气预测。虽然大气预报并不是什么新鲜事,但最近随着 21 世纪人工智能 (AI) 技术的应用,大气预报的技能得到了极大提升。这些技术是高性能计算 (HPC) 和深度学习 (DL) 的结合。本演讲的主题是使用来自地面大气收集系统的 TB 级数据训练预测模型,并使用图形处理单元 (GPU) 加速其训练和推理的能力。本研究侧重于预测的三个时间尺度。这些时间尺度包括短期(0 到 60 分钟)、中期(1 小时到 3 小时)和长期(3 到 48 小时)。这些时间尺度代表激光和/或监视应用和任务的各种决策点。在短期预测情况下,多种 DL 技术应用于从光学地面站 (OGS) 收集的本地数据。这些 DL 技术包括使用 U-Net 卷积神经网络和多层感知器 (MLP) 和随机森林 (RF) 模型的集合。 MLP 用于从激光云高仪和红外云成像仪 (ICI) 等仪器收集的点数据。对于中间时间尺度,卷积长短期记忆 (LSTM) 网络和 U-Net 均使用来自 NOAA 地球静止卫星云图集合的图像进行训练。最后,组合 U-Net 和自动编码器神经网络用于训练由 HPC 数值天气预报 (NWP) 模型模拟的大气预测器以进行长期预测。NWP 会产生许多 TB 的数据,因此,使用这些神经网络是优化其预测能力的理想选择。本研究利用了多种 HPC 资源。其中包括由四个 NVIDIA Tesla V100 GPU 组成的内部 GPU 节点以及毛伊高性能计算中心 (MHPCC) 的资源。结果表明,在几乎所有情况下,这些预测技术都优于持久性,而且偏差很小。使用 HPC 和 DL 推理实时进行预测的能力是未来的重点,将在会议上报告。1. 简介大气衰减和失真降低了太空激光和监视应用的功效。特别是,云层可以部分或完全遮挡目标,并阻止或要求降低光通信系统的数据速率。但是,通过准确表征和预测大气影响,可以减轻许多负面影响。本研究的目的是开发和完善一种最先进的大气预测系统,该系统可生成高分辨率的大气衰减预测,以支持太空激光和监视应用的决策辅助。为了实现这一目标,HPC 和 AI 的进步与数 TB 的高分辨率地面和太空大气数据集合相结合。多种 HPC 资源用于处理本研究所需的地面和卫星数据,并使用四个 NVIDIA Tesla V100 GPU 加速 AI 预测技术的训练和推理。该技术用于进行多时间尺度大气预测:1 小时预测、2 小时以上预测和 48 小时预测。最长 1 小时;最长 2+ 小时;最长 48 小时。最长 1 小时;最长 2+ 小时;最长 48 小时。
•中性粒细胞,单核细胞,T细胞,NKT,NK和B细胞亚型的门控策略; (a)在LD粒细胞,LD中性粒细胞(CD14+ CD16-)(B)CXCR3和HLA-DR测量上的CD14和CD16表达在LD中性粒细胞(C)CD19+ B细胞上,CD19+ B细胞在CD27和CD38和CD38,NAIME B细胞(CD27-CD38+)中(CD27-CD38+)(CD27-CD38+)(CD27-CD38+)(CD27-CD38+)细胞( (CD27+CD38+)测量。(d)在CD24和CD38上输送的记忆B细胞,显示了概述的过渡B细胞门。(e)在CD24和CD38上门控的幼稚的B细胞,其中CD24+CD38 ++过渡B细胞门控。(f)使用CD14和CD16:CD14+CD16-经典,CD14+CD16+中间体和CD14-CD16-非古典的单核细胞亚型。(G)CD14+单核细胞CXCR3和HLA-DR状态。(H)CD3和CD19用于定义; B细胞(CD19+),T细胞(CD3+)和NBNT(CD19- CD3-)淋巴细胞。(I)定义CD4 T细胞,CD8 T细胞,CD4+CD8+双阳性和CD4-CD8-双阴性T细胞(J)CD56和CD16表达的T细胞的CD4和CD8染色,CD56+NKT和CD16+NKT的T细胞上的CD56和CD16表达。(k)非-B和非T细胞(NBNT)群体显示CD56和CD16的表达,以识别CD56Bright(CD56 ++),NK细胞(CD56+CD16+)和CD56-CD16+NK细胞。(l-r)cxcr3和hla-dr表达; (L)CD4 T细胞(M)CD8 T细胞(N)CD56+ T细胞(O)CD16+ T细胞(P)CD56 ++ NK细胞(Q)CD56+ CD16+ CD16+ NK细胞(R)CD56-CD16+ NK细胞。(S-W)CD27和CD38的表达; (S)CD4-CD8-DN T细胞(T)CD4 T细胞(U)CD8 T细胞(V)CD56+ T细胞(W)CD16+ T细胞。CD4和CD8在(x)CD56+ T细胞(y)CD16+ T细胞上的表达。CD4和CD8在(x)CD56+ T细胞(y)CD16+ T细胞上的表达。
N % N % N % N % N % Number of individuals 47509 - 62587 - 99108 - 440748 - 235335 - SARS-Cov-2 before 27 December 2020 1408 - 782 - 575 - 14949 - 3477 - Number of individuals included in the analyses 46101 - 61805 - 98533 - 425799 - 231858 - Median age at first dose (IQR) 84 (76; 90) - 83 (76; 88) - 86 (85; 88) - 49 (37; 59) - 66 (54; 74) - Median age at second dose (IQR) 84 (77; 90) - 83 (76; 89) - 86 (85; 88) - 49 (37; 58) - 68 (56; 75) - 性
Panimalar Institute of Technology, Chennai -----------------------------------------------------------------------------***--------------------------------------------------------------------------- Abstract-- The visual representations of the inner constituents of body along with the functions of either organs or tissues comprising its physiology are developed in medical imaging..本文提到的系统的目的是检测出血的存在并在检测到其类型的情况下进行分类。ct图像在这里考虑找到出血。进行预处理技术是为了使输入图像适合进一步处理。进行预处理后,图像通过形态操作进行。然后采用分割算法进行分割。绘制了主动轮廓并提取了特征。可以通过医疗援助来查看和解释最终结果。这项研究的结果增加了预测图像出血,然后对其类型进行分类的机会。系统在分类三种类型的出血时的平均准确性被发现为98%。关键词 - CT,脑内出血,硬膜下出血,外部出血,蛛网膜下腔出血,流域算法。
摘要:停车引导和信息 (CPGI) 系统通过提供停车位占用情况的实时指示和节省时间,有可能减少拥挤区域的拥堵。如今,这些系统广泛应用于使用昂贵传感器方法的室内环境。因此,随着室外环境对 PGI 系统的需求不断增加,低成本的基于图像的检测方法已成为最近使用摄像头的研究和开发的中心。由于对卷积神经网络 (CNN) 在各种图像类别识别任务中的出色表现感兴趣,本研究提出了一个强大的停车位占用检测框架,使用深度 CNN 和二进制支持向量机 (SVM) 分类器从图像中发现室外停车位的占用情况。分类器由深度 CNN 从具有不同强度和天气条件的公共数据集 (PKLot) 中学习到的特征进行训练和测试。因此,我们评估了已建立技术在为本研究生成的停车数据集上的迁移学习性能(将结果简化为新数据集的能力),我们的系统将在通知用户之前提供。我们分别对公共数据集和我们的数据集进行了 99.7% 和 96.7% 的检测,这表明该技术具有为户外环境中的 CPGI 系统提供廉价且一致的解决方案的卓越能力。关键词—CPGI、基于图像的检测方法、CNN、稳健的停车位占用检测框架、SVM 分类器
人工智能取得了显著的成功,在某些任务上甚至在医学等复杂领域都比人类专家表现更好。另一方面,人类擅长多模态思维,可以几乎立即将新输入嵌入到由经验塑造的概念知识空间中。在许多领域,目标是建立能够自我解释的系统,参与交互式假设问题。这类问题被称为反事实问题,在可解释人工智能 (xAI) 这一新兴领域中变得越来越重要。我们的核心假设是,使用概念知识作为现实的指导模型将有助于训练更可解释、更稳健、偏差更小的机器学习模型,理想情况下能够从更少的数据中学习。医学领域的一个重要方面是各种模态对一个结果有贡献。我们的主要问题是“如何使用知识库作为开发新解释界面技术的初始连接器来构建多模态特征表示空间(涵盖图像、文本、基因组数据)?”。在本文中,我们主张使用图神经网络作为一种选择方法,实现多模态因果关系的信息融合(因果关系——不要与因果关系混淆——是人类专家对因果关系的解释达到特定理解水平的可衡量程度)。本文旨在激励国际 xAI 社区进一步研究多模态嵌入和跨