注:本文提供的分析和讨论不包括中国自有的 CTO/CTP(煤制烯烃/煤制丙烯)行业。该行业拥有自己的自有甲醇,专门用于生产烯烃,因此不被视为商用甲醇。作为参考,第一张图(右侧)显示了 CTO/CTP 行业对甲醇总需求的贡献。本演示文稿的其余部分不包括 CTO/CTP 行业和分析和/或讨论的数量。此外,虽然这项研究承认甲醇作为燃料替代品的潜在市场很大,但 Argus 认为,这种新需求的大部分将基于“绿色”甲醇,而不是现有的“化石”甲醇。本研究包括少量用于燃料的甲醇,但这更多的是作为未来的证明。
本报告是由美国政府某个机构资助的工作报告。美国政府及其任何机构、巴特尔纪念研究所或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或保证其使用不会侵犯私有权利。本文中对任何特定商业产品、流程或服务的商品名、商标、制造商或其他方面的引用并不一定构成或暗示美国政府或其任何机构或巴特尔纪念研究所对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
项目理由沼气是一种具有高甲烷浓度的复杂气体混合物,是通过生物量的厌氧消化获得的可再生资源。尽管可以燃烧产生热量或电力,但它释放了CO 2,并且具有沼气丰富的各种污染物会导致它是一种相当低级的燃料。而不是特别使用沼气的甲烷成分,而是Abime(晚期沼气至甲醇电催化)项目的目标是沼气的化学价值。通过选择性地将其中的甲烷转换为甲醇,可以转化高度有效的温室气体以提供有价值的平台化学物质。将甲烷直接转化为甲醇(M2M)被认为是催化中的圣杯之一,并且已经研究了数十年。通过单氧酶酶的结构澄清刺激了该领域的最新推动,该酶能够将甲烷氧化为甲醇并在其活性位点中含有铁或铜。复制这些酶的活性是立方体项目在催化部分的目的。但是,ABIME项目遵循一种电化学方法,其中氧化速率可以通过所施加的潜力来精心控制。因此,该项目的挑战是生产配备有效催化剂的电极以促进选择性氧化。对于这些催化剂来说,看似微不足道但重要的要求是,它们需要具有导电性才能使电子到达反应物分子。在多种候选材料中,最近出现了具有有意义的电导率的金属有机框架(MOF)用于电催化应用[1-4]。作为迈向电化学沼气氧化的第一步,这个夏季项目的目的是基于三座三苯基接头,综合并表征具有电导率的金属有机框架。
总而言之,将顺式HBPA与异构体HBPA分离,并且将两个新型的单体HBPADA和Diamine F轻轻合成。通过两步热弹性化获得了一系列含有顺式-HBPA单元的聚酰亚胺。PI (1 6) exhibited T g and T 5% (in N 2 ) in range of 214 266 °C (DSC) and 386 407 °C respectively, and T S in the range of 85 122 MPa, indicating that the introduction of alicyclic cis -HBPA fragments did not deteriorate their thermal and mechanical properties compared with the aromatic PI 7.重要的是,所有聚酰亚胺膜在450 nm时的透射率高达86%,其良好的综合性能,尤其是出色的透明度和加工性,加上低介电常数,并且良好的机械性能使这些聚合物成为OptoElectronic设备式构造。
甲醇与水混合是一种致密的氢载体,很容易转化为合成物(氢和碳氧化物的混合物)。也很容易完成将纯化的氢与合成能分离的过程。甲醇是全球可用的全球生产的前十种化学商品,可以填补高碳强度燃料(如柴油)和100%可再生能源的目标目标之间的空白。可再生甲醇可商购,并且正在建造许多新植物。关于可再生甲醇的好评,包括当前的商业操作和成本预测。(27; 28)运输量表的可再生甲醇将需要时间,但是随着对可再生甲醇的需求增加,全球甲醇制造商正在投资增加产量。
已经开发出一种优化工具来确定电转甲醇子系统(电解器、氢气和电池存储以及甲醇生产厂)的最佳配置和规模,以最大限度地降低电转甲醇生产成本。研究结果表明,并网配置比离网配置更具经济效益。对于 300,000 吨/年的甲醇生产能力,并网配置实现了 1,094 欧元/吨的甲醇平准成本 (LCOM),比离网配置低 20%。离网配置的最佳生产规模为 70,000 吨/年,LCOM 为 1,220 欧元/吨。对于并网配置,较大的工厂受益于规模经济,年产能为 100 万吨的工厂可获得 1,072 欧元/吨的 LCOM。
低碳甲醇可能成为近期清洁氢气需求的最重要来源。它不仅是一个需要脱碳的大型化学品市场,而且低碳甲醇也是航运业减少排放最容易获得的选择。欧盟的法规和国际海事组织的净零目标正在推动航运业采购绿色燃料。BNEF 估计,全球低碳甲醇项目的规划产能每年可消耗 165 万公吨清洁氢气。BNEF 和气候技术联盟的这份白皮书概述了氢气在甲醇生产中的作用,并概述了潜在的商业和政策考虑因素,如果实施,可能会提前实现具有成本竞争力的清洁甲醇。
在全球不断增长的能源危机中,化石燃料的Xed和dwindling股票以及极端的污染中,生产替代燃料的可接受手段是一个重要的突破。1,2根据专家的说法,人类活动引起的大气CO 2浓度的指数增长是生物社会最严重的威胁。 人口的扩张,一种现代的豪华生活方式和重要的工业发展都增加了CO 2排放,这使得这是一个越来越严重的问题。 3没有比在太阳能激发下将环境CO 2转换为可用的燃料碳氢化合物(例如甲醇或乙醇)的尖端光催化技术的更好解决能量和环境危机的方法。 4,5下一代仿生技术看起来很有希望,因为它们减少了潜在的污染物,同时也转化为低成本碳氢化合物的燃料,即。 ,甲醇,将太阳能和大气CO 2用作原材料。 6另一方面,在紫外线/可见光下,将CO 2的氧化氧化还原光合作用发育开发为有效的氧化还原光合作用,仍然是一个巨大的挑战。 7,81,2根据专家的说法,人类活动引起的大气CO 2浓度的指数增长是生物社会最严重的威胁。人口的扩张,一种现代的豪华生活方式和重要的工业发展都增加了CO 2排放,这使得这是一个越来越严重的问题。3没有比在太阳能激发下将环境CO 2转换为可用的燃料碳氢化合物(例如甲醇或乙醇)的尖端光催化技术的更好解决能量和环境危机的方法。4,5下一代仿生技术看起来很有希望,因为它们减少了潜在的污染物,同时也转化为低成本碳氢化合物的燃料,即。,甲醇,将太阳能和大气CO 2用作原材料。6另一方面,在紫外线/可见光下,将CO 2的氧化氧化还原光合作用发育开发为有效的氧化还原光合作用,仍然是一个巨大的挑战。7,8
在全球可持续发展目标的推动下,海运业正在经历重大转型,在瑞典领导下的欧盟强烈提倡使用低碳替代品取代传统化石燃料。这一转变正推动全球各大港口调整其基础设施以适应电力运营,并适应甲醇等替代燃料。荷兰、西班牙、丹麦、德国和瑞典承诺将甲醇作为未来运营的核心燃料。利用城市固体废物、生物质和绿色氢气生产甲醇设施的投资正在增加,进一步表明了这一承诺。瑞典奥斯卡港正在研究现场生产甲醇的潜力,以顺应全球趋势,本研究的目的是为奥斯卡港当局提供咨询,帮助他们通过专注于两种甲醇生产路线生产甲醇:生物质制甲醇 (BtM) 和电甲醇 (e-MeOH)。
Gorontalo 96128 Korespestensi Penulis:nurvitaabdullah@gmail.com摘要。Garuga Floribunda(Garuga Floribunda Decne)植物是以各种药用特性而闻名的物种之一。这项研究旨在研究α-葡萄糖苷酶和α-淀粉酶的抑制活性,并确定Garuga Floribunda叶片作为抗糖尿病剂的最佳浓度。通过使用甲醇作为溶剂作为萃取过程获得叶片的提取,并使用d-硝基苯基-α-D-糖酰胺(P-NPG)对α-葡萄糖苷酶对α-葡萄糖苷酶的抑制活性进行了测试。该方法是UV-VIS分光光度法。该植物的植物化学测试揭示了类黄酮,生物碱,皂苷,单宁,类固醇和萜类化合物的存在。抑制测试结果表明,Garuga Floribundaleaves的甲醇提取物对这两种酶表现出显着的抑制活性。对α-葡萄糖苷酶的最高抑制百分比为91.09%,表明抗糖尿病活性很高。同时,对α-淀粉酶的抑制作用为7.56%,没有明显的抗糖尿病活性。抑制两种酶的最佳浓度为1000 ppm。关键词:跳蚤,抑制,酶,抗糖尿病abtrak。Tumbuhan Buhu(Garuga Floribunda Decne)Merupakan Salah Satu Spesies Tumbuhan Dengan Beberapa Khasiat Obat。metode yang digunakan adalah metode spektrofotometer uv-vis。kata kunci:buhu,inhibisi,enzim,抗糖尿病这项研究的目的是研究α-葡萄糖苷酶和α-淀粉酶的抑制活性,并找出Buhu叶甲醇提取物作为抗糖尿病的最佳浓度。buhu叶提取物是通过使用甲醇溶剂提取的过程获得的,其抑制活性使用dNS-DNS substrate(3-氨基酯(3-二氨酸)(3-二氨酸)(3-氨基型)(使用α-氨基酶),使用p-硝基苯基D-D-D-D-D-D-丙氨酸酶(P-NPG)底酸(P-NPG)底物测试。植物化学测试包括类黄酮化合物,生物碱,皂苷,单宁,类固醇和萜类化合物。抑制测试的结果表明,布胡叶的甲醇提取物对两种酶具有显着的抑制活性。抑制α-葡萄糖苷酶的最高百分比为91.09±1.52 ppm,分为抗糖尿病非常活跃。对于α-淀粉酶5.33±0.79 ppm,不活跃为抗糖尿病。