摘要 — 我们开发了一种基于化学合成的 Al µ − IDE /HfS 2 的新型电阻式气体传感器,用于在室温下精确检测甲醇蒸汽。在室温下,在 1 V 的工作偏压下,暴露于 500 ppm 的甲醇蒸汽,灵敏度高达 1.29。灵敏度是通过瞬态响应分析获得的。最重要的是,我们见证了非常快速的响应/恢复特性和良好的基线恢复。响应时间和恢复时间分别在 ∼ 12.12 s 至 ∼ 21.14 s 和 ∼ 23.72 s 至 ∼ 39 s 范围内。我们还研究了与其他干扰物质的交叉敏感性。我们还描述了全面的论证,包括可观的传感响应的朗缪尔吸附-解吸等温线。
©2021。此手稿版本可在CC-BY-NC-ND 4.0许可下提供https://creativecommons.org/licenses/by-nc-nc-nd/4.0/
摘要背景:市面上有几种间接量热法 (IC) 仪器,但缺乏比较有效性和可靠性数据。现有数据受到协议、受试者特征或单仪器验证比较不一致的限制。本研究的目的是使用甲醇燃烧作为跨实验室标准来比较代谢车的准确性和可靠性。方法:在 12 个代谢车上完成了八次 20 分钟的甲醇燃烧试验。计算了呼吸交换率 (RER) 和 O 2 和 CO 2 恢复百分比。结果:为了准确度,1 Omnical、Cosmed Quark CPET(Cosmed)和两个 Parvos(Parvo Medics trueOne 2400)测量的所有 3 个变量在真实值的 2% 以内; DeltaTracs 和 Vmax Encore System (Vmax) 在测量 1 个或 2 个变量(但不是全部变量)时都表现出相似的准确性。对于可靠性,8 种仪器被证明是可靠的,其中 2 种 Omnicals 排名最高(变异系数 [CV] < 1.26%)。Cosmeds、Parvos、DeltaTracs、1 Jaeger Oxycon Pro (Oxycon)、Max-II Metabolic Systems (Max-II) 和 Vmax 至少对 1 个变量可靠 (CV ࣘ 3%)。对于多元回归,湿度和甲醇燃烧量是 RER 的显著预测因子(R 2 = 0.33,P < .001)。温度和甲醇燃烧量是 O 2 恢复的显著预测因子(R 2 = 0.18,P < .001);只有湿度是 CO 2 回收率的预测因素(R 2 = 0.15,P < .001)。结论:Omnical、Parvo、Cosmed 和 DeltaTrac 具有更高的准确性和可靠性。测试的仪器数量较少,并且气体校准变异性预计存在差异,限制了结论的普遍性。最后,可以在实验室中修改湿度和温度以优化 IC 条件。(Nutr Clin Pract.2018;33:206–216)
Honeywell是一家综合运营公司,为世界各地的各个行业和地理位置提供服务。我们的业务与三个强大的大型大趋势 - 自动化,航空和能源过渡的未来 - 由我们的Honeywell Accelerator操作系统和Honeywell Forge IoT平台支撑。作为一个值得信赖的合作伙伴,我们帮助组织解决世界上最艰巨,最复杂的挑战,通过我们的航空航天技术,工业自动化,建立自动化以及能源和可持续性解决方案业务领域提供可行的解决方案和创新,从而帮助使世界更加聪明,更安全,更安全,更安全,更安全,更安全。有关Honeywell的更多新闻和信息,请访问www.honeywell.com/newsroom。
抗菌药物用于抑制和管理动植物中的传染病。当细菌不再对抗菌药物反应导致疾病的威胁延伸,可怕的感染,无能为力和到期时,就会发生抗菌耐药性(AMR)。AMR是一种通常的程序,它逐渐涉及微生物的遗传变化。人类相互作用,特别是对菌丝体调节动植物中疾病的不当利用可促进其建立和传播。在本研究中,检查了根际真菌的甲醇提取物的抗氧化剂和抗菌活性。The two rhizospheric fungal species, Fusarium incarnatum and Aspergillus ochraceous , were distinguished on the basis of distinct and microscopic features.通过技术气相色谱 - 质谱法(GC-MS)检查了上面根际真菌的51种化合物。与鳄鱼皮曲霉相比,与大肠杆菌相反,与大肠杆菌相反,与大肠杆菌和26毫米的枯草芽孢杆菌相反。在硅对接研究中进一步显示,针对四环素的所有化合物(即4.95 kcal/mol),在-6.3 kcal/mol至-3.9 kcal/mol之间的结合能,这是食品和药物管理局(FDA)的抗菌药物认可的药物之一。
在食品工业中,微生物污染构成了一个巨大的挑战。用于消毒的化学物质会损害食品安全和健康。迫切需要有效的安全消毒剂来抑制农业和食品中的病原体。在这种情况下,我们调查了在与大肠杆菌,金黄色葡萄球菌和白色念珠菌作为自然的消毒剂候选者的斗争中,使用foeniculum vulgare甲醇提取物(ME)的可能性。通过GC-MS分析了F. vulgare me的组件。肉汤微稀释法和表面消毒试验分别用于抗菌活性和对数抑制作用。主要物质是苯甲烷(50.44%),雌激素(13.59%)和苯甲酸(13.58%)。金黄色葡萄球菌和白色念珠菌的F. vulgare的最小氮浓度(MIC)为0.1 g/ml,而大肠杆菌的最小浓度为0.1 g/ml。在表面消毒试验中,研究了大肠杆菌,金黄色葡萄球菌和白色念珠菌的存活率,暴露于F. vulgare消毒剂(F-SAN:10%),F。vulgare的50、100和150 µL的F. vulgare导致大肠条件下的大肠杆菌减少了几乎8-LOG(0.3 g/ml BSA)。在金黄色葡萄球菌中,150 µl的F. vulgare分别在清洁和脏表面(3 g/mL BSA)中造成约4.8和4.7对数。最高的菌落降低是在两种环境中降低˃4.93对数的白色念珠菌中。结果表明,F. vulgare甲醇提取物可能是针对病原体的强大自然消毒剂。
摘要氧化锌(ZnO)纳米颗粒是具有广泛应用潜力的多功能材料。此RE搜索的目的是合成ZnO纳米颗粒,利用甲醇中的Indigofera Tinctoria叶提取物作为一种生态友好的还原和稳定剂。合成在提取物质量方面的变化,即1 g(z1),5 g(z5)和10 g(z10),以评估提取物浓度对纳米颗粒特性的影响。ftir,XRD,SEM,XRF和UV-VIS DRS用于表征样品。FTIR分析结果显示,波数为422-430 cm -1处的典型ZnO峰。 XRD分析表明,纳米颗粒具有带有空间群p63mc的六边形wurtzite晶体结构。 随着提取物浓度在折痕中的浓度下降,总计16.55 nm(Z1),15.21 nm(Z5)和13.75 nm(Z10)。 带隙能量从3.19 eV(Z1)增加到3.21 eV(Z10),表明在较高的提取浓度下光活性增加。 通过SEM进行的形态分析表明,所有样品均表现出准球形形状。 eds表征显示仅识别Zn和O元素。 XRF结果证实了ZnO纳米ticle的原始性,ZnO含量为98.99%。 这项研究为ZnO纳米颗粒的合成中的Indigofera Tinctoria叶提取物的潜在用途提供了新的见解,可用于各种功能材料和技术应用。FTIR分析结果显示,波数为422-430 cm -1处的典型ZnO峰。XRD分析表明,纳米颗粒具有带有空间群p63mc的六边形wurtzite晶体结构。随着提取物浓度在折痕中的浓度下降,总计16.55 nm(Z1),15.21 nm(Z5)和13.75 nm(Z10)。带隙能量从3.19 eV(Z1)增加到3.21 eV(Z10),表明在较高的提取浓度下光活性增加。通过SEM进行的形态分析表明,所有样品均表现出准球形形状。 eds表征显示仅识别Zn和O元素。 XRF结果证实了ZnO纳米ticle的原始性,ZnO含量为98.99%。 这项研究为ZnO纳米颗粒的合成中的Indigofera Tinctoria叶提取物的潜在用途提供了新的见解,可用于各种功能材料和技术应用。通过SEM进行的形态分析表明,所有样品均表现出准球形形状。eds表征显示仅识别Zn和O元素。XRF结果证实了ZnO纳米ticle的原始性,ZnO含量为98.99%。这项研究为ZnO纳米颗粒的合成中的Indigofera Tinctoria叶提取物的潜在用途提供了新的见解,可用于各种功能材料和技术应用。这些结果还为开发绿色合成方法开发了纳米材料具有特征的纳米材料的机会,可以根据应用需求进行定制。
甲醇是一种透明液体化学品,可溶于水,易于生物降解。1 甲醇由四份氢、一份氧和一份碳组成,是一类称为醇的有机化学品中最简单的一种。如今,甲醇主要以工业规模生产,主要原料是天然气。甲醇用于生产其他化学衍生物,而这些衍生物又用于生产与我们日常生活息息相关的数千种产品,例如建筑材料、泡沫、树脂、塑料、油漆、聚酯以及各种健康和医药产品。甲醇也是一种清洁燃烧、可生物降解的燃料。甲醇的环境和经济优势日益使其成为一种颇具吸引力的替代燃料,用于为车辆和船舶提供动力、烹饪食物和供暖行业。甲醇可以由多种原料制成,是当今最灵活的化学商品和能源之一。要制造甲醇,首先需要制造合成气,它是 CO、CO2 和氢气的混合物。虽然天然气在全球经济中最常用,但甲醇具有“多联产”的独特优势,因为甲醇可以由任何可以转化为合成气的资源制成。使用成熟的气化技术,合成气可以从任何工厂生产。这包括生物质、农业和木材废物、城市固体废物和其他几种原料。图 1 显示了甲醇原料、产品和用途。
确定了非洲甲醇茎皮提取物的抗炎和抗菌作用。定性植物化学筛查的结果表明,单宁,皂苷,类黄酮,生物碱,酚,类固醇和萜类化合物存在。定量分析揭示了生物碱(0.11%),单宁(1.92%),苯酚(3.77%),类黄酮(0.77%),类固醇(0.14%),terpenoids(0.21%)和皂苷(4.01%)(4.01%)。使用爪子浸入法评估了在雄性白化病大鼠中评估非洲甲醇干草提取物的抗炎作用。在200mg/kg的剂量下,甲醇干燥的非洲甲醇干燥树状提取物产生的抗炎性作用是显着的(p <0.05),在0-90分钟的时间间隔时,它比其他浓度更有效。甲醇干燥的非洲裔甲醇干燥树皮提取物的抗菌活性在铜绿假单胞菌上产生了最高的抑制区(L7mm)和葡萄球菌上抑制(11mm)的最低抑制区(11mm)。非洲非洲甲醇干 - 树皮提取物的最小抑制浓度值针对E.Coli,S。金黄色葡萄球菌和p。areuginosa为2.5mg/ml,肺炎为5.5mg/ml。获得的结果表明,非洲甲醇的甲醇干 - 树皮提取物对肺炎的甲醇茎皮提取物的抗菌作用比氨苄青霉素更有效。这项工作进一步支持
可再生甲醇对印度经济的作用有多大? Gregory A. Dolan:甲醇自 2016 年以来一直被列入政府议程,是一种战略产品,可以帮助印度实现其 2070 年碳中和愿景。甲醇可以由各种传统(天然气和煤炭)和可再生原料生产,包括生物质、城市固体废物、太阳能和风能以及捕获的二氧化碳。作为一种低碳和净碳中性燃料,甲醇为显著减少温室气体排放提供了途径。与传统燃料相比,可再生甲醇可以在碳生命周期评估 (LCA) 基础上减少高达 95% 的二氧化碳排放量,减少高达 80% 的氮氧化物排放量,并消除硫氧化物和颗粒物排放。当甲醇用作燃料以降低道路交通、内陆水道、发电等应用的碳强度时,这些气候和当地污染效益会叠加,