摘要:本文报道了基于有限差分时域 (FDTD) 和有限元法 (FEM) 的介电谐振器材料测量装置建模的最新进展。与介电谐振器设计方法不同,介电谐振器设计方法使用贝塞尔函数的解析展开来求解麦克斯韦方程,而本文仅使用解析信息来确保场的固定角度变化,而在纵向和径向方向上应用空间离散化,从而将问题简化为 2D。此外,当在时域中进行离散化时,全波电磁求解器可以直接耦合到半导体漂移扩散求解器,以更好地理解和预测基于半导体的样品的谐振器的行为。本文将 FDTD 和频域 FEM 方法应用于介电样品的建模,并根据 IEC 规范规定的 0.3% 范围内的测量结果进行验证。然后采用内部开发的耦合多物理场时域 FEM 求解器,以考虑电磁照明下的局部电导率变化。由此展示了新方法,为介电谐振器测量的新应用开辟了道路。
用于负电容场效应晶体管的缺氧无唤醒 La 掺杂 HfO2 铁电体的水性制备方法 / Pujar, Pavan;Cho, Haewon;Kim, Young-Hoon;Zagni, Nicolo;Oh, Jeonghyeon;Lee, Eunha;Gandla, Srinivas;Nukala, Pavan;Kim, Young-Min;Alam, Muhammad Ashraful;Kim, Sunkook。- 收录于:ACS NANO。- ISSN 1936-0851。- 17:19(2023),第 19076-19086 页。[10.1021/acsnano.3c04983]
教师在工程学的物理学和科学学科领域提供了广泛的培训,从研究基本颗粒到力学和电子产品,通过凝结物质,材料和纳米科学。将三个独立的地点用于课程:历史校园,Cronenbourg的CNRS校园和Illkirch-Graffenstaden的技术大厅。培训优惠包括大约二十个文凭培训,包括与工程学校共同培训,国际合作伙伴关系和共同住宅。这种多元化的报价以其强大的锚定向国家和国际著名实验室以及与区域工业结构的合作,从而为学生提供实践学习和专业经验机会的区别。这种坚实的联系使教师在物理和工程领域具有显着的可见性。
基于AFNIA(HfO 2 )的硅通道铁电场效应晶体管(HfO 2 Si-FeFET)在非挥发性存储器领域得到了广泛的研究[1-7],这得益于掺杂HfO 2 中铁电性的发现[8]。文献报道中HfO 2 Si-FeFET的存储窗口(MW)大多在1-2 V左右[9-12],不能满足其在多位存储单元应用的要求。为了提高MW,当前的措施主要通过降低掺杂HfO 2 铁电体与Si通道之间底部SiO x 夹层的电场,从而抑制掺杂HfO 2 /SiO x 界面处的电荷捕获[13-16],同时增加SiO x 的数量。最近,有报道称MIFIS结构可以有效提高MW,并使用SiO 2 作为顶部夹层[17-21]。然而,Al 2 O 3 作为顶层尚未见报道。因此,我们报道 Al 2 O 3 层作为顶层中间层,以及 MW 对 Al 2 O 3 厚度的依赖性。
铁电纤锌矿具有彻底改变现代微电子学的潜力,因为它们很容易与多种主流半导体平台集成。然而,为了与互补金属氧化物半导体 (CMOS) 电子产品兼容,需要大幅降低反转其极化方向和解锁电子和光学功能所需的电场。为了了解这一过程,我们用扫描透射电子显微镜在原子尺度上观察并量化了代表性铁电纤锌矿 (Al 0.94 B 0.06 N) 的实时极化切换。分析揭示了一种极化反转模型,其中纤锌矿基面中褶皱的铝/氮化硼环逐渐变平并采用瞬态非极性几何结构。独立的第一性原理模拟揭示了通过反极性相的反转过程的细节和能量。该模型和局部机械理解是这种新兴材料类别的属性工程工作的关键初始步骤。B
摘要。添加剂制造(AM),也称为3D打印,可以构建定制包装的微电体系统,这些系统是完美量身定制的,可完美地针对组件尺寸和规格。在融合沉积3D打印技术(FDM)中,残留应力受印刷条件的影响,这会降低材料性能并导致几何变形。在打印过程中,时间和温度会影响FDM中使用的聚合物的热机械性能和结晶动力学。这项工作的目的是根据印刷条件(环境温度,打印速度和层厚度)评估样品中的残余应力。选择了六个点以计算和比较样品中的残余应力,第一层中有三个点,第二点为三个点。模拟和建模用于研究印刷条件对半晶体聚合物热力学行为的影响,以进行有效评估。
极化和铁电转变温度之间的关系 ( 5 ) – 即它们可能不是软模式铁电体;(ii) 实现铁电性的新物理机制几乎肯定会带来不同的物理缩放趋势表现和不同的温度、压力和时间特性依赖性;(iii) 这些材料可以在室温或接近室温下加工,具有稳健的特性响应,在某些情况下(例如、Al 1-x B x N)为 40
铁电体中的非均匀极化纹理为丰富的新材料物理学提供了沃土。非均匀极化分布的含义之一是在极化不连续处或一般在极化矢量场发散非零的点处出现束缚电荷。束缚电荷会感应出能量耗费很大的电场。因此,无论极化分布多么复杂,系统都倾向于保持其内部的电中性。那么中性意味着要么极化矢量场应该无发散,要么束缚电荷应该受到半导体性质的自由载流子的屏蔽。非均匀且几乎无发散的极化纹理主要见于多轴铁电体 [1,2],其中自发极化矢量可以旋转。