聚合物电极将激光切割成弹簧形的同心设计,并连接到硅基板上。“此设计可增强电极的可伸缩性,并确保电流靶向皮肤上的特定位置,从而提供局部刺激以防止任何疼痛。” Abdulhameed Abdal博士说。加州大学圣地亚哥分校的机械和航空航天工程系的学生和该研究的另一位联合首先作者。Abdal和Blau与UC San Diego Nano Engineering本科生Yi Qie,Anthony Navarro和Jason Chin合成电极的合成和制造。
厄瓜多尔瓜亚基尔高等政治学院,ESPOL 电气和计算机工程系,Gustavo Galindo 校区,Perimetral 路 30.5 号,邮政信箱 09-01-5863,瓜亚基尔,厄瓜多尔 {vasanza 1、epelaez 2、floayza 3}@espol.edu.ec 摘要 —。现代技术使用脑机接口 (BCI) 来控制身体有障碍人士的设备或假肢。在某些情况下,EEG 数据用于确定受试者在执行运动和想象运动任务时的意向性。然而,由于获取的电压水平较低,EEG 信号很容易受到噪声的影响。我们使用了 25 名健康受试者在进行手脚运动和想象运动时 64 个 EEG 记录的数据集。数据经过预处理,包括设计滤波器以降低操作 EEG 信号的预期频谱之外的噪声。然后,我们使用基于谱密度的特征提取。最后,应用五种聚类算法来检测运动和想象运动任务。结果表明,k-means、k-medoids 和层次聚类算法可以更好地检测运动活动,而层次聚类则更适合手部的想象任务。
本研究的目的是实施一种基于黎曼几何 (RG) 的算法,使用任务诱导的脑电图 (EEG) 信号检测高心理负荷 (MWL) 和心理疲劳 (MF)。为了引发高 MWL 和 MF,参与者以字母 n-back 任务的形式执行了一项认知要求高的任务。我们采用基于 RG 的框架分析了不同任务条件和皮质区域下 theta 和 alpha 频带中 EEG 波段功率 (BP) 特征的时间变化特性。当任务运行 EEG 的黎曼距离达到或超过基线 EEG 的阈值时,MWL 和 MF 被认为太高。本研究结果显示,随着实验持续时间的增加,theta 和 alpha 频带中的 BP 增加,表明 MWL 和 MF 升高会阻碍/妨碍参与者的任务表现。在 20 名参与者中,有 8 名检测到高 MWL 和 MF。随着实验持续时间的增加,黎曼距离也显示出向阈值稳步增加,大多数检测发生在实验结束时。为了支持我们的发现,我们还考虑了主观评分(有关疲劳和工作量水平的问卷)和行为测量(性能准确性和响应时间)。
摘要。神经系统疾病是影响大脑和中枢自主神经系统的疾病。这些疾病对个人的健康和总体幸福感造成了巨大的损害。除了心血管疾病之外,神经系统疾病是导致死亡的主要原因。这些疾病包括癫痫、阿尔茨海默病、痴呆症、脑血管疾病(包括中风、偏头痛、帕金森病)和许多其他疾病。本文介绍了使用脑电图 (EEG) 信号和机器学习技术诊断三种最常见神经系统疾病的最新综合研究综述。本文讨论的疾病是更普遍的疾病,如癫痫、注意力缺陷多动障碍 (ADHD) 和阿尔茨海默病。本文有助于了解有关用于诊断和分析神经系统疾病的 EEG 信号处理的细节,以及对各种技术的数据集、局限性、结果和研究范围的讨论。© 2021 生物医学光子学与工程杂志。
UGC 试用帐户 (3000178880) - UGC-Infonet 数字图书馆联盟召集人 (3000132959) - 奥兰加巴德巴巴萨海布·阿姆贝德卡尔马拉特瓦达大学 (3000171661) - 信息和图书馆网络 (INFLIBNET) 中心 (3994475188)
人类的情绪状态可以自然转变,并可通过面部表情、声音或身体动作识别,这些都受所接受的刺激影响。然而,即使经历了喜悦、悲伤或其他感觉,每个人也并非都能表达情绪。从生物医学角度来看,情绪会影响脑电波活动,因为持续运作的脑细胞通过电脉冲进行交流。因此,脑电图 (EEG) 用于捕获来自脑信号的输入、研究脉冲并确定人类情绪。检查通常包括观察一个人对给定刺激的反应,但即时结果尚无定论。在本研究中,相关分类为正常、专注、悲伤和震惊。通过使用名为 Neurosky Mindwave 的单通道脑电图记录了 50 名受试者的原始脑电波数据。同时,在通过听音乐、看视频或阅读书籍刺激候选人的思维的同时进行评估。采用快速傅立叶变换 (FFT) 方法进行特征提取,并采用 K-最近邻 (K-NN) 对脑脉冲进行分类。参数 k 的值为 15,平均分类准确率为 83.33%,而专注情绪状态的最高准确率为 93.33%。Neurosky Mindwave 与 FFT 和 KNN 技术相结合,是潜在的分析解决方案,有助于增强对人类情绪状况的识别。
摘要 脑机接口系统从脑电图 (EEG) 信号中解码大脑活动,并将用户的意图转化为控制和/或与增强或辅助设备通信的命令,而无需激活任何肌肉或周围神经。在本文中,我们旨在通过一种新颖的进化方法(基于融合的预处理方法)使用改进的 EEG 信号处理技术来提高这些系统的准确性。这种方法的灵感来自染色体交叉,即同源染色体之间遗传物质的转移。在本研究中,提出的基于融合的预处理方法被应用于从 29 名受试者收集的开放获取数据集。然后,通过自回归模型提取特征并用 k 最近邻分类器进行分类。我们对基于二元心算 (MA) 的 EEG 信号检测实现了 67.57% 到 99.70% 的分类准确率 (CA)。除了获得 88.71% 的平均 CA 之外,93.10% 的受试者在使用基于融合的预处理方法时表现出了性能改进。此外,我们将所提出的研究与共同平均参考 (CAR) 方法进行了比较,并且没有应用任何预处理方法。所取得的结果表明,所提出的方法分别比 CAR 和未应用任何预处理方法提供了 3.91% 和 2.75% 更好的 CA。结果还证明了所提出的进化预处理方法在对 MA 任务期间记录的 EEG 信号进行分类方面具有巨大潜力。
能够记录和传输生物信号的可穿戴电子设备可以提供便捷且普遍的健康监测。典型的脑电图记录会产生大量数据。传统的压缩方法无法将数据压缩到奈奎斯特速率以下,因此即使压缩后数据量仍然很大。这需要大量存储空间,因此传输时间也较长。压缩感知提出了解决这个问题的方法,并提供了一种将数据压缩到奈奎斯特速率以下的方法。本文提出基于双时间稀疏性的重建算法来恢复压缩采样的脑电图数据。通过使用schattern-p范数修改基于双时间稀疏性的重建算法并在处理前对脑电图数据进行去相关变换,进一步改善了结果。所提出的改进双时间稀疏性的重建算法在SNDR和NMSE方面优于基于块稀疏贝叶斯学习和Rackness的压缩感知算法。仿真结果进一步表明,所提出的算法具有更好的收敛速度和更短的执行时间。
背景:脑电图作为检测脑部神经电活动的客观方法,已被成功应用于重度抑郁症(MDD)的检测,但脑电通道和脑区的选择直接影响检测算法的性能。方法:针对上述问题,提取非线性特征Lempel-Ziv复杂度(LZC)和频域特征功率谱密度(PSD)对EEG信号进行分析,并在闭眼和睁眼静息状态下研究不同脑区及脑区组合对MDD检测的影响。结果:MDD患者的平均LZC高于对照组,MDD患者的平均PSD普遍低于对照组。颞区是MDD检测的最佳脑区,检测准确率为87.4%;最佳多脑区组合的检测准确率为92.4%,由额叶、颞叶和中枢脑区组成。结论:本文验证了多脑区检测MDD的有效性,为探索MDD的病理机制、创新诊疗方法提供了新思路。
摘要:脑电图 (EEG) 信号中的自动情绪识别可视为脑机接口 (BCI) 系统的主要组成部分。在过去的几年中,许多该方向的研究人员提出了各种从 EEG 信号中自动分类情绪的算法,并取得了令人鼓舞的成果;然而,缺乏稳定性、高误差和低准确度仍然被认为是这项研究的主要差距。为此,获得一个具有稳定性、高精度和低误差前提的模型对于自动分类情绪至关重要。在本研究中,提出了一种基于深度卷积神经网络 (DCNN) 的模型,该模型可以高可靠性地从基于音乐刺激的 EEG 信号中分类出三种积极、消极和中性情绪。为此,在志愿者听积极和消极音乐以刺激情绪状态时,收集了一个全面的 EEG 信号数据库。所提出的模型的架构由六个卷积层和两个完全连接层的组合组成。本研究研究了不同的特征学习和手工特征选择/提取算法,并相互比较了它们对情绪的分类。所提出的两类(正面和负面)和三类(正面、中性和负面)情绪分类模型的准确率分别为 98% 和 96%,与之前的研究结果相比,这一结果非常有希望。为了更全面地评估,所提出的模型还在噪声环境中进行了研究;在各种不同的 SNR 下,分类准确率仍然大于 90%。由于所提出的模型性能高,它可以用于脑机用户环境。