2 School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea 5 SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, California 94305, USA 6 Cintra CNRS/NTU/Thales,Umi 3288,研究技术广场,637553,新加坡7催化理论中心,丹麦技术大学物理学系,丹麦林格比,丹麦2820 8材料学院,Sun Yat-Sen University,Sun Yat-Sen University,Sun Yat-Sen University,Sun Yat-Sen University,Puangzhou 510275,Cungzhou 510275 Nanyang Technological University Electronic Engineering,639798,新加坡†同等贡献通讯作者。*Byungchan Han:bchan@yonsei.ac.kr; ** pingqi gao:gaopq3@mail.sysu.edu.cn; *** hong li:ehongli@ntu.edu.sg电话:+0065 6790 5519
摘要:质子交换膜水电解仪(PEM-WE)是一种著名的氢生产绿色技术。大规模开发的主要障碍是氧气进化反应(OER)的动力学。目前,对OER的酸稳定电催化剂的设计构成了电催化中的重要活性。本评论介绍了对氧气演化,反应机理和OER描述符的高级电催化剂设计的基本原理和策略的分析。对OER电催化剂的审查进行了从单一到多元素的元素组成。此外,总结了高渗透合金(HEAS)的目的(HEAS),用于设计高级材料的设计。brie tove the the的影响,对调节催化剂的电子特性有益的支持材料的影响。最后,给出了酸性OER电催化剂的前景。
使用可再生电力将二氧化碳/一氧化碳升级为多碳 C 2 + 产品,为更可持续的燃料和化学品生产提供了一种途径。醋酸盐是最具吸引力的产品之一,其有利可图的电合成需要效率更高的催化剂。本文报道了一种配位聚合物 (CP) 催化剂,该催化剂由通过 Cu(I)-咪唑配位键连接的 Cu(I) 和苯并咪唑单元组成,可在流动池中以 400 mA cm − 2 的电流密度将 CO 选择性还原为醋酸盐,相对于可逆氢电极,在 − 0.59 伏时法拉第效率为 61%。该催化剂集成在基于阳离子交换膜的膜电极组件中,可实现 190 小时的稳定醋酸盐电合成,同时实现从阴极液体流中直接收集浓缩醋酸盐(3.3 摩尔),CO 到醋酸盐转化的平均单程利用率为 50%,在电流密度为 250 mA cm − 2 时醋酸盐全电池平均能量效率为 15%。
本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
之前的隶属关系为:Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia。更正后的隶属关系为:Australian Synchrotron, ANSTO, Clayton VIC 3168, Australia。
摘要:在过去的几十年中,X 射线吸收光谱 (XAS) 已成为探测非均相催化剂结构和成分、揭示活性位点的性质以及建立催化剂结构模式、局部电子结构和催化性能之间联系的不可或缺的方法。本文将讨论 XAS 方法的基本原理,并描述用于解读 X 射线吸收近边结构 (XANES) 和扩展 X 射线吸收精细结构 (EXAFS) 光谱的仪器和数据分析方法的进展。本文将介绍 XAS 在非均相催化领域的最新应用,重点介绍与电催化相关的示例。后者是一个快速发展的领域,具有广泛的工业应用,但在实验表征限制和所需的高级建模方法方面也面临着独特的挑战。本综述将重点介绍使用 XAS 对复杂的现实世界电催化剂获得的新见解,包括其工作机制和化学反应过程中发生的动态过程。更具体地说,我们将讨论原位和原位 XAS 的应用,以探测催化剂与环境(载体、电解质、配体、吸附物、反应产物和中间体)的相互作用及其在适应反应条件时的结构、化学和电子转变。
摘要:金属-空气电池,特别是锂-空气和锌-空气电池,由于其理论比能量高、安全和环境友好而引起了广泛的关注和研究。然而,正极动力学缓慢是阻碍其实际电化学性能的关键因素之一。为了解决这个问题,使用高效催化剂是一种可行有效的策略。在已报道的各种催化剂中,高熵合金(HEA)由于其可调的组成和电子结构已成为一种很有前途的催化剂。因此,在HEA催化体系中取得了令人鼓舞的电池性能。在本综述中,我们首先总结了具有代表性的金属-空气电池,包括锂-O 2 、锂-CO 2 和锌-空气电池的反应机理和挑战,然后介绍了HEA的合成方法和核心效应。我们还总结了HEA在这些电池中的一些研究进展。最后,我们对HEA在金属-空气电池中的未来研究前景进行了展望。
在高电流操作条件下发展高性能的氧气进化反应(OER)电催化剂对于碱性水电解的未来商业应用至关重要。在此,我们准备了一个三维(3D)双金属氧氧化物杂交杂种,该杂交杂种在Ni泡沫(NifeOOOH/NF)上生长,该杂种是通过将Ni Foam(NF)浸入Fe(NO 3)3溶液中制备的。在这种独特的3D结构中,NifeOOH/NF杂种由Crystalline Ni(OH)2和NF表面上的无定形FeOOH组成。作为双金属氧氧化电催化剂,NifeOOOH/NF混合动力表现出极好的催化活性,不仅超过了其他报道的基于NI -FE的电催化剂,而且超过了商业IR/C催化剂。原位电化学拉曼光谱学证明了参与OER过程的活性FeOOH和NiOOH相。从Fe和Ni催化位点的协同作用中,NifeOOOH/NF混合动力在80 C的10.0 mol l 1 KOH电解质下在具有挑战性的工业条件下提供了出色的OER性能,需要在1.47和1.51 V中的潜力,以达到1.47和1.51 V,以达到1.47和1.51 V,以达到超高的催化电流的100和500 mA。2021作者。由Elsevier Ltd代表中国工程学院和高等教育出版社有限公司出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
快速发现新型高性能电催化剂对于促进化学和材料行业的电化学革命至关重要。1,2然而,从大量可能的设计空间中识别最有希望的催化剂系统代表了一个重要的挑战。3,这种挑战会随着电催化剂设计的细微差别而加剧,扩展到新型材料类别,在这种新型材料类别中,确定最佳的活动趋势可能是高度不平凡的。不仅新近培养的催化剂需要具有最佳的催化活性,而且还需要满足其他几个绩效限制,以便在工业规模上相关。例如,(1)任何有前途的候选系统都必须在经济上可行(例如能够以相对较低的成本以相对较低的成本进行大规模合成),(2)候选系统必须在动态和操作上稳定,等等。因此,理想高性能催化剂的发现和设计需要平衡几个标准,不限于催化性能,