摘要。使用热泵每年的气候化是实现2030年欧洲脱碳目标的合适平均值(相对于1990年的CO 2排放,-55%)。使用季节性能源储藏量可以存储由热泵产生的两个同时效应之一(热和冷却能量),在必要时可以连续使用。本文着重于动态模拟,以尺寸尺寸加热和冷却厂,并为位于意大利北部的翻新建筑物定义合适的控制逻辑。该植物是通过每年运行中的电动泵建立的,再加上地面冰储存。在夏季使用加热操作过程中产生的冰面对冷却负荷(免费冷却)。光伏/热模块可以通过恢复家庭热水或地面的热量来提高网格独立性并减少植物的一级能量消耗,因为它们可以在任何季节适当冷却。对系统的动态模拟允许在充电和放电过程中对冰箱的行为进行完整描述。此外,与同一建筑物的双源热泵配置相比,还报告了整个植物的主要能量性能分析。
近年来,随着智能技术的快速发展,一切都依赖于互联网,人们渴望掌控周围的一切。灌溉系统也通过使用现代技术变得智能,这比传统的灌溉方法更具优势。在这项工作中,开发了一种智能灌溉系统,该系统可自动执行由太阳能供电的灌溉过程。该系统可以根据不同的数据(例如土壤湿度、天气预报和土壤温度)优化用水。利用物联网技术的土壤湿度传感器将被插入农田以检测湿度水平,然后通过开发的移动应用程序将土壤的当前状况通知农民。此外,当湿度水平和土壤温度低于 50% 时,系统可以通过移动应用程序自动打开电动泵来灌溉农场,当湿度水平和温度高于 75% 时,在满足土壤需求后将自动关闭泵。整个系统由微控制器控制,太阳能电池板产生直流电,有助于使系统在一天中的任何时间保持工作。所有这些功能将使灌溉系统更加智能、经济和环保。总之,建议居住在供水不畅地区的农民使用该系统。
可再生能源的生长需要灵活,低成本和有效的电气存储系统,以平衡能源供应和需求之间的不匹配。当电力生产大于需求时,用热泵(HP)将电能(或泵送的热能储能)转换为热能;当电力需求超过生产时,Carnot电池会从两个热存储库(Rankine模式)中产生电力。经典的Carnot电池体系结构的实现不超过60%的往返电效率。但是,使用废热回收(热集成的Carnot电池)的创新体系结构能够达到比热泵的电力消耗大于电动泵的电动循环的电力生产(功率为电力比率),从而提高了技术的价值。可以证明,这种技术的优化是电力最大化和功率功率比(取决于电价等)之间的权衡。在本文中,描述了使用可逆的热泵/有机兰金循环(HP/ORC)的热整合Carnot电池原型的完整开发。它包括选择名义设计点,体系结构,组件和尺寸的选择。第一次实验活动显示,圆形电能比为72.5%,ORC效率为5%(温度提升等于49 K),HP的COP为14.4(温度提升等于8 K)。此外,分析了主组件(体积机和热交换器)的性能。这些结果非常令人鼓舞,因为可以通过优化体积机,更大规模地工作,优化控制和热绝缘,可以轻松提高性能(可能高达100%的往返电能比率)。
00 °C 摄氏度 00° 00' 00” 度、分、秒 000° M 磁航向 AAIB 航空事故调查处 aal 机场以上 ACC 区域管制中心 ACMP 交流电动泵 ADF 自动测向仪 ADI 姿态指引仪 AEC 机尾设备中心 agl 地面以上 AIP 航空资料出版物 amsl 平均海平面以上 AOC 航空运营人证书 APP 进近 APU 辅助动力装置 ARO 飞机报告处 ATC 空中交通管制 ATIS 自动航站楼信息服务 ATPL 航空运输飞行员执照 BKN 破损 C 摄氏度 CAP 民航出版物 CB 积雨云或断路器 CG 重心 cm 厘米 CRM 驾驶舱资源管理 CVR 驾驶舱语音记录器 DFDR 数字飞行数据记录器 DME 测距设备 EASA 欧洲航空安全局 EDP 发动机驱动泵 EFI 电子飞行仪表 EICAS 发动机指示和机组警报系统 EPR 发动机压力比 ETA 预计到达时间 FAA 联邦航空管理局 FAR 联邦航空条例 FDR 飞行数据记录器 FEC 前方设备中心 FIR 飞行信息区 FMC 飞行管理计算机 FMU 燃油计量单位 FO 副驾驶 FOM 飞行操作手册 fpm 英尺/分钟 ft 英尺 g 重力加速度 GCU 发电机控制单元 GPWS 近地警告系统 GRN 赫罗纳机场 Hpa 百帕斯卡 小时 小时 分钟 HSI 水平情况指示器 IAP 起始进近点 ICAO 国际民用航空局
在这项技术分析中,我们研究了德克萨斯州住宅部门完全电气化太空加热对得克萨斯州电力可靠性委员会(ERCOT)电网能源消耗,峰值功率需求和电网容量利用的影响。我们利用了国家可再生能源实验室(NREL)Resstock工具来开发具有地理位置代表性的住房库存模型和基于物理的EnergyPlus建模软件来创建代表Ercot操作区域住宅区的总体建筑库存能源模型。在这个总体建筑能源模型中,我们用可逆的电动热泵代替了所有天然气和其他化石燃料炉的效率,这些效率的可逆电动泵可以在冬季提供加热并在夏季冷却。我们将空间分辨的实际气象天气数据与建筑物的库存能源模型整合在一起,以模拟ERCOT地区每小时解决的特定年份(2016)的特定年份(2016年)。我们发现,ERCOT内17个区域中每个区域的每天的年度电力消耗,每天的峰值小时电力需求以及负载持续时间曲线。从基本情况下,住宅部门的绝对冬季峰值电力需求可能会增加36%或12 gW。这些结果表明,网格能力将需要增加10 gW(住宅区增加25%)才能适应冬季峰值住宅行业。使用平均2018年排放率,我们估计对标准效率热泵的变化将导致CO 2排放量减少4.1%,而住宅部门的NO X排放量减少了5.8%。尽管冬季电力消耗将增加家庭供暖,但每年的电量消耗量将保持大致相同或减少,因为效率较高的热泵可提供比它们也更换的常规空调更有效的冷却。在我们的标准效率方案中,因此X排放没有显着变化,但是在高和超高的总效率方案中,因此X排放分别降低了8.3%和15.0%。