有机电化学晶体管(OECTS)将离子转换为电信号,这使它们成为广泛的生物电子应用的有前途的候选人。,尽管他们承诺,但仍未完全了解其设备几何形状对性能的影响。在此,将两个不同的设备几何形状(顶部接触和底部接触OECT)根据其接触性,可重复性和开关速度进行比较。表明,底部接触设备的切换时间更快,而其顶部接触式对应器在略有降低的接触抗性和增加的可重复性方面表现出色。讨论了速度和可重复性之间这种权衡的起源,该速度和可重复性之间的权衡为特定应用程序提供了优化指南。
作者 D Motabar · 2021 · 被引用 25 次 — 生物学和电子学都擅长接收、分析和响应信息,但它们使用的方式却完全不同。
在这项工作中,进行电化学测试以测量在存在离子液体(ILS)1-乙基-3-甲基咪唑乙酸酯((EMIM) +(AC) - 1-乙基-3-乙基-3-甲基-3-甲基咪唑烷基咪唑硫酸盐(BR Bromomide)的情况下,在碳钢自由溶解过程中测量氢渗透率(ILS)。 1-叔丁基-3-甲基咪唑唑化三氟甲氟化[(BMIM) +(BF 4) - ]在5.4 mol L -1 HCl水溶液中。还评估了还评估了5-羟基-2-硝基甲基 - 二苯胺(HPY)和商业腐蚀抑制剂(CCI)的渗透抑制效率(IEP(%))。在IL中,(BMIM) +(BF 4) - 化合物呈现出最高的腐蚀和氢渗透抑制效率,值分别为23%和30%。(EMIM) +(br)和(EMIM) +(AC) - 化合物无效抵抗腐蚀,但它们的IEP分别为15.8%和23%。HPY化合物在预防腐蚀方面表现出61%的有效性,而在计算机评估中则表明毒性没有毒性。但是,HPY化合物和CCI化合物在腌制过程中均未抑制氢进入碳钢。
电池和电化学电容器 (EC) 对于电动汽车、电网和移动设备等应用至关重要。然而,现有电池和 EC 技术的性能无法满足汽车工业、航空航天和利用可再生能源的电网存储等日益增长的市场对高能量/高功率和长耐用性的要求。因此,改善储能材料的性能指标势在必行。在过去的二十年里,辐射已经成为一种改变储能材料功能的新手段。人们普遍存在一种误解,认为高能离子和电子的辐射总是会对目标材料造成辐射损伤,这可能会阻碍其在电化学储能系统中的应用。但在这篇评论中,我们总结了辐射对电化学储能系统材料影响的最新进展,以表明辐射对各种类型的能源材料都有有益和有害的影响。先前的研究表明,对控制由此产生的微观结构、缺陷产生、界面特性、机械性能和最终电化学性能的能量损失机制的基本理解至关重要。我们讨论辐射效应的类别如下:1) 缺陷工程,2) 界面工程,3) 辐射诱导降解,4) 辐射辅助合成。我们分析了重要趋势,并提供了对当前研究和未来研究方向的看法和展望,这些研究旨在利用辐射作为增强电池材料合成和性能的方法。
Lee,C。&Yan,Q。 (2021)。 氮对氨的电化学减少:进步,挑战和未来前景。 电化学中的当前意见,29,100808-。 https://dx.doi.org/10.1016/j.coelec.2021.100808Lee,C。&Yan,Q。(2021)。氮对氨的电化学减少:进步,挑战和未来前景。电化学中的当前意见,29,100808-。https://dx.doi.org/10.1016/j.coelec.2021.100808https://dx.doi.org/10.1016/j.coelec.2021.100808
众所周知,化石燃料的广泛使用导致大气中二氧化碳水平稳步上升。工业革命前时期大气中二氧化碳平均水平在 180 ppm(冰河时期)和 280 ppm(间冰期)之间波动。根据查尔斯·大卫·基林的测量,1958 年大气中二氧化碳浓度约为 317 ppm。此后,这一数值急剧上升,自 2017 年以来,一直稳定在 400 ppm 以上。毫无疑问,这导致了自然大气平衡的变化,进而导致地球平均温度明显上升。从环境和安全的角度来看,用可再生能源替代对环境有害的化石燃料似乎非常有吸引力,因为使用可再生能源不会产生有毒产品。然而,它们的间歇性和地球上分布不均是
电化学分解可用于以适合存储可再生能源的规模产生绿色氢。因此,如果要以所需的规模开发出能量季节性存储,则氢进化反应(HE)和氧气进化反应(OER)的催化剂的选择至关重要。一个关键方面是用更便宜的替代品代替诸如FE,CO,NI和MN的替代品,这是本演讲的重点。在这里,我们证明了实验室合成的纳米材料可以使用的替代方法,这些纳米材料对OER和她有效,许多材料基于目前在非常大规模的材料中,例如;铁矿石包含她和OER所需的许多活跃元素,可以简单地修饰的不锈钢,并从用过的电池材料中回收锰氧化物。i还将讨论双功能电催化剂的概念,并讨论这对整体电化学水分裂以及上述材料的潜在适用性意味着什么,以证明HER和OER活性。关键字:电催化;水分裂;氢产生。致谢澳大利亚研究委员会(ARC)通过ARC Discovery计划和澳大利亚可再生能源机构(Arena)。介绍作者的传记
第五章介绍了空蚀腐蚀造成的性能退化影响。获得了质量损失变化的函数,这可以确定被测钢的抵抗力,以及定位空蚀的各个阶段。得到的阻抗结果证明了超声波振动激励器的短期和长期影响。激励器运行的直接效应是系统阻抗的瞬时降低,当激励器关闭时,这种效应就会消失。阻抗谱形状的变化主要与反应物质量传输的加速有关,也与腐蚀产物层的“剥离”有关。第二种影响与空蚀腐蚀引起的性能下降有关,会导致被测系统阻抗不可逆地降低。本章提出
定位空蚀的各个阶段。获得的阻抗结果证明了超声波振动激励器的短期和长期影响。激励器的直接影响是系统阻抗暂时降低,关闭后该影响消失。阻抗谱形状的变化主要与反应物传质的加速有关,同时也与腐蚀产物层的“剥离”有关。第二种类型的影响与气蚀腐蚀引起的退化有关,会导致测试系统的阻抗出现不可逆转的下降。本章建议