摘要本文介绍了电池储能系统(BESS)的中型电压分配网络(MV-DN)的黑色启动。BES由一个两级电压源逆变器接口MV-DN组成,该逆变器限制了过电流的能力。另一方面,MV-DN通常包括几个升级和降低的变压器,它们正在绘制交感神经液在通电阶段中。因此,在MV-DN Island操作过程中,执行黑色的主要困难在于逆变器必须同时控制网络电压及其输出电流。本文提供了两种控制方法,以控制MV-DN黑色启动过程中的inrush电流。所提出的控制方案由固定参考框架中的下垂,电压和电流循环组成。下垂环用于生成电压参考。中间电压和内部电流循环均设计用于输出电压调节,电流参考生成以及电流跟踪。新的参考修改器包含在下垂和电压循环中,以限制Inrush电流。通过1 mva bess在芬兰对芬兰的Ingå-DN进行了实验测试,以实验测试了其性能,并根据冲洗电流值和电压质量比较其性能。获得的结果证明,两种方法都能够在稳态中使用固定电压为负载以及考虑到逆流过电流极限的固定电压以及限制变压器的冲洗电流。
AC 交流电 AEO 年度能源展望 ATB 年度技术基线 BECCS 含碳捕获与储存的生物能源 CAGR 复合年增长率 CapEx 资本支出 CARB 加州空气资源委员会 CC 联合循环 CCS 碳捕获与储存 CO 2 二氧化碳 CSP 聚光太阳能 CT 燃气轮机 DC 直流电 dGen 分布式发电市场需求模型 DOE 美国能源部 EIA 美国能源信息署 EPA 美国环境保护署 H2-CT 氢燃料燃气轮机 HVDC 高压直流电 IRA 2022 年通胀削减法案 ITC 投资税收抵免 LCC 线路换向转换器 MMBtu 百万英热单位 MMT 百万公吨 MW 兆瓦 MWh 兆瓦时 NETL 国家能源技术实验室 NG-CC 天然气联合循环 NG-CT 天然气燃气轮机 NOx 氮氧化物 NREL 国家可再生能源实验室 OGS 油气蒸汽 O&M 运营与维护 PTC 生产税收抵免 PV 光伏 RE 可再生能源 RE-CT 可再生能源燃气轮机 ReEDS 区域能源部署系统 TW 太瓦 TWh 太瓦时 TW-mi 太瓦英里 USLCI 美国生命周期清单数据库 VSC 电压源转换器
在进行此任务时,在高交通范围内执行此任务时,请样品一般安全的工作练习,以增加电池的高VIS背心或其他类型的轻型背心和/或反射式服装(如果有)。c)将供体车辆发动机放置在接收器车辆电池附近,不直接交通。不要让车辆互相触摸。d)两个电池的清洁端子,因此可以清楚地看到“+”和“”标记。e)将红色电缆连接到每个车辆电池的“+”柱。f)将黑色电缆连接到良好的供体电池的“ - ”帖子。g)最后,将黑色电缆的另一端连接到车辆发动机的未上色金属部分。注意:如果车辆配备了MRS无线电,则必须在提升之前断开电源的电源。h)启动供体车辆发动机(请注意,由于内部计算机传感问题迎接的所有者手册,一些新车辆建议将发动机关闭)。i)启动接收器车辆发动机。j)汽车运行后,以相反的顺序卸下电缆。k)允许接收器车辆发动机至少运行10分钟,以充分充分充电电池。不要:a)不要尝试辅助增强冷冻电池或所有电解质液的蒸发b)如果供体电压源大于15伏(例如,重型设备)。c)在存在易燃材料的情况下不要执行此任务。
为了最大限度地减少环境和能源问题,分布式可再生能源在过去几十年中取得了显著的进步,尤其是风能和太阳能光伏发电,它们被视为现代电力系统发电的未来。将可再生能源整合到电力系统中需要使用先进的电力电子转换器,这对智能电网的范式提出了挑战,例如,提高效率、获得高功率密度、保证容错能力、降低控制复杂性以及缓解电能质量问题。本文对可再生能源应用的前端转换器(更具体地说是将可再生能源与电网连接的功率逆变器)进行了专门的回顾。值得注意的是,本文的目的并不是涵盖所有类型的前端转换器;重点仅放在基于电压源布置并允许电流或电压反馈控制的单相多级结构上,该结构仅限于五个电压电平。已建立的审查考虑了以下主要分类:(a)无源和有源功率半导体的数量;(b)容错特性;(c)控制复杂性;(d)特定无源元件(如电容器或电感器)的要求;(e)独立或分离直流链路电压的数量。整篇论文介绍了几种特定的五级前端拓扑结构,并对它们进行了比较,强调了每种拓扑作为可再生能源与电网接口候选者的优缺点。
AC 交流电 AEO 年度能源展望 ATB 年度技术基线 BECCS 含碳捕获与储存的生物能源 CAGR 复合年增长率 CapEx 资本支出 CARB 加州空气资源委员会 CC 联合循环 CCS 碳捕获与储存 CO 2 二氧化碳 CSP 聚光太阳能 CT 燃气轮机 DC 直流电 dGen 分布式发电市场需求模型 DOE 美国能源部 EIA 美国能源信息署 EPA 美国环境保护署 H2-CT 氢燃料燃气轮机 HVDC 高压直流电 IRA 2022 年通胀削减法案 ITC 投资税收抵免 LCC 线路换向转换器 MMBtu 百万英热单位 MMT 百万公吨 MW 兆瓦 MWh 兆瓦时 NETL 国家能源技术实验室 NG-CC 天然气联合循环 NG-CT 天然气燃气轮机 NOx 氮氧化物 NREL 国家可再生能源实验室 OGS 油气蒸汽 O&M 运营与维护 PTC 生产税收抵免 PV 光伏 RE 可再生能源 RE-CT 可再生能源燃气轮机 ReEDS 区域能源部署系统 TW 太瓦 TWh 太瓦时 TW-mi 太瓦英里 USLCI 美国生命周期库存数据库 VSC 电压源转换器
1 威斯康星大学密尔沃基分校可持续电能系统中心,美国密尔沃基 2 土耳其安卡拉加齐大学技术学院电气与电子工程系 jeanpie4@uwm.edu;aie@uwm.edu;naltin@gazi.edu.tr;nasiri@uwm.edu 收稿日期:2020 年 4 月 10 日 接受日期:2020 年 6 月 22 日 摘要 - 近年来,用于并网应用的结合光伏 (PV) 系统和集成储能的分布式发电厂的研究兴趣日益增加。然而,多种能源的组合需要大量的 DC-DC 转换器,因此变得更加复杂。为了解决这个问题,本研究提出了一种用于并网应用的多端口双向 DC-DC LLC 谐振转换器。为了最大限度地降低所提系统的控制复杂性,还开发了一种基于区域的控制器方法,该方法集成了基于增量电导法的改进最大功率点跟踪 (MMPPT) 方法。该控制器能够在从公用电网输送或获取电力时调节转换器电压和功率流。本研究中介绍的转换器包含一个双向降压-升压转换器和一个 LLC 谐振转换器,以及一个电压源并网逆变器。它们都与 PV、电池和公用设施连接。通过 MATLAB/Simulink 进行的大量仿真分析证明了所提拓扑的运行。
快速而准确的建模拓扑对于动力传动系统电气化至关重要。热效应在任何电化学系统中都非常重要,在电池模型中必须考虑这一点,因为温度因素在传输现象和化学动力学中最为重要。这里讨论了锂离子电池的动态性能,并开发了合适的电气等效电路来研究其对输出突然变化的响应。本文提出了一种具有热依赖性的有效锂电池仿真模型。一个串联电阻、一个电压源和一个 RC 块构成了所提出的等效电路模型。研究和比较了文献中常用的 1 RC 和 2 RC 锂离子电池模型。使用 Matlab/Simulink 软件对锂离子电池 1RC 和 2 RC 模型进行仿真。本文中的仿真结果表明,在恒定电流条件下,锂离子电池 1 RC 模型的最大输出误差比 2 RC 锂离子电池模型大 0.42%,在 UDDS 循环条件下,1 RC 锂离子电池模型的最大输出误差比 2 RC 锂离子电池模型大 0.18%。仿真结果还表明,在简单和复杂放电模式下,与 1 RC 锂离子电池模型相比,2 RC 锂离子电池模型的输出误差得到了很大改善。因此,本文表明,对于笔记本电脑等便携式电子设计等一般应用,锂离子电池 1 RC 模型是首选,而对于汽车和空间设计应用,锂离子 2 RC 模型是首选。在本文中,1 RC 和 2 RC 锂离子电池模型的这些仿真结果将对电动汽车实际锂离子电池管理系统的应用非常有用。
全球能源需求的很大一部分可能由大量可再生能源满足。另一方面,可再生能源的产出由于其来源的动态特性而变化。将这些可变电源整合到现有电网中,对世界各地的电力系统运营商来说都是困难的。可再生能源系统的基本问题是,由于可再生能源的随机性,电力产量在不同时期都有所不同。最近对可再生能源技术的研究和开发可以确保岛屿的长期电力供应。另一方面,可再生能源受到其不可预测性和严重依赖天气条件的限制。为了弥补这个缺点,必须将几种可再生能源和转换器结合起来。为了平衡发电量和负载功率,提出了一种用于独立应用的混合可再生能源发电。太阳能发电厂模型由串联的 170 W 光伏 (PV) 板组成,能量转换使用最大功率点跟踪 (MPPT) 算法完成,该算法调节降压-升压转换器调制。转换器控制步骤中使用的 MPPT 方法基于扰动和观察 (P&O),并通过 PI 控制器增强。双向降压-升压 DC-DC 转换器 (BBDC) 用于保持 DC 链路电压稳定。这还将额外的混合能量存储在大型电池中并分配给系统负载;然后出现混合动力短缺。负载电流功率根据频率进行调节,并使用三个矢量控制技术电压源逆变器 (VSI) 来实现。结果展示了该组织的混合性能。
摘要 — 无线电力传输 (WPT) 是电动汽车 (EV) 轻松充电技术的突破之一。人们提出并实施了不同类型的无线充电器拓扑结构,以满足各种约束,如电力传输效率、无线传输距离和错位公差。然而,对于电动自行车和电动滑板车等中低功率电动汽车的非接触式充电,耦合分离和传输效率仍未得到充分开发。为了在容易出现错位问题的车辆中实现远距离 WPT,使用串联 (SS) 补偿 WPT。传统的 SS 补偿 WPT 使用电压馈送转换器进行电力转换。但这些拓扑结构的组合允许系统中的反向电流流动,这将影响源的传输效率和寿命。为了防止这种情况,可以使用反向阻塞二极管或电流馈送转换器。虽然反向电流问题可以解决,但这些方法似乎进一步降低了电力传输效率。本文试图优化基于电流馈电转换器的 SS-WPT,以实现比传统设计更高的耦合分离、更高的电力传输效率和更高的错位容差。为实现此目的,对电流馈电转换器的输入电感器和 SS-WPT 的初级线圈进行了调整,而不会影响磁共振条件。在耦合分离为 200 毫米时,传输效率为 94%,比传统的基于电压源逆变器的可再生能源供电的 SS-WPT 充电效率高出 20%。在原型设计中验证了该概念后,通过在实时电动自行车中对其进行测试来验证结果。
摘要:本文提出了一种有关完全分布的AC/DC微电网的新型合作控制技术。基于逆变器的分布式生成具有两种类型,即当前源逆变器(CSI),也称为PQ逆变器,电压源逆变器(VSI)。两种逆变器形式具有两层配位机制。本文提出了一种用于调节逆变器内部电流的数字比例共振(PR)控制器的设计方法。逆变器将提高微电网的电压质量,同时将总线的平均电压保持在相同的所需水平。关于谐振和比例增益以及数字共振路径系数的计算有全面的细节。本文包括数字PR控制器设计及其在频域中的分析。分析基于W域。本文的主要贡献是提出的方法,该方法不仅侧重于瞬态响应,而且还改善了平滑电压的稳态响应。此外,所有逆变器都有效地参与了以提高微电网对更好的电源管理的能力。建议的合作控制技术用于具有完全分布的通信的IEEE 14总线系统。令人信服的结果表明,建议的控制技术是调节微电网电压以获得更均匀稳定的电压曲线的有效手段。微电网包含分布式资源,并用作分析与智能电网相关的功率流和质量指标的主要元素。最后,使用数值模拟观测来证实推荐的算法。