经颅磁刺激 (TMS) 线圈位置和脉冲波形电流通常用于在目标大脑区域实现指定的电场剂量。通过包括皮质上电场剂量的实时精确分布,可以改进 TMS 神经导航。我们介绍了一种方法并开发了软件来实时计算大脑电场分布,使其易于集成到神经导航中,并具有与一阶有限元法 (FEM) 求解器相同的精度。首先,将头部和允许的线圈位置之间的表面上的白噪声磁流产生的电场的跨度基组 (< 400) 正交化以生成模式。随后,利用互易和惠更斯原理通过 FEM 计算头部和线圈之间的表面上的模式引起的场,这些场与分离表面上的在线(实时)计算的一次场结合使用以评估模式扩展。我们对 8 名受试者的 FEM 和实时计算的 E 场进行了比较分析,使用了两种头部模型类型(SimNIBS 的“headreco”和“mri2mesh”管道)、三种线圈类型(圆形、双锥和 8 字形)和 1000 个线圈位置(48,000 次模拟)。任何线圈位置的实时计算都在 4 毫秒 (ms) 以内,适用于 400 种模式,并且需要 GPU 上不到 4 GB 的内存。我们的解算器能够在 4 毫秒内计算 E 场,使其成为将 E 场信息集成到神经导航系统中的实用方法,而不会对帧生成造成重大开销(分别在 50 毫秒和 20 毫秒内每秒 20 帧和 50 帧)。
马来西亚已采取各种战略措施来促进和发展可再生能源行业。2009 年,国家可再生能源政策和行动计划出台,旨在加强可再生能源资源的利用,为电力供应安全和社会经济可持续发展做出贡献。17 这项可再生能源政策考虑了能源、工业和环境等各方面因素,为国家可再生能源行业的发展制定了平衡的路线图。这项政策的五个主要目标是:(a)增加可再生能源在国家发电结构中的贡献,(b)促进可再生能源行业的发展,(c)确保合理的可再生能源发电成本,(d)为子孙后代保护环境,最后,(e)提高对可再生能源的作用和重要性的认识。17,18 为了实现这些政策目标,提出并实施了一项具有战略重点的行动计划。17 图 1 显示了为实现成功的国家可再生能源政策而采取的行动计划的示意图。通过适当实施国家可再生能源政策和行动计划,到 2050 年,可再生能源可在全国发电结构中贡献高达 11.5 吉瓦或总峰值电力需求容量的 36%。17,18
摘要。深脑刺激(DBS)是一种用于治疗运动障碍的既定疗法,并且显示出有望治疗多种其他神经系统疾病的结果。,对DBS的作用机理或刺激造成的脑组织的体积知之甚少。我们开发了使用解剖学和扩散张量MRI(DTI)数据来预测DBS激活的组织(VTA)的方法。我们将成像数据与大脑的详细有限元模型共同注册,并刺激电极以解剖和电气准确地预测刺激的扩散。模型的一个关键组成部分是DTI张量字段,用于表示三维各向异性和不均匀的组织电导率。使用该系统,我们能够融合结构和功能信息,以研究用于治疗帕金森氏病(PD)的丘脑下核的相关临床概率:DB。我们的结果表明,与同质性的各向同性组织体积相比,在我们的模型中包含张量范围会导致VTA的大小和形状的显着差异。这些差异的宏观与刺激电压成正比。我们的模型预测是通过比较预测的活化的扩散与观察到的PD患者眼动神经刺激的影响的传播来验证的。反过来,脑的3D组织电性能在调节DBS产生的神经激活的扩散中起着重要作用。
电致变色 (Electrochromic, EC) 是材料的光学属 性 ( 透过率、反射率或吸收率 ) 在外加电场作用下发 生稳定、可逆颜色变化的现象 [1] 。 1961 年 , 美国芝 加哥大学 Platt [2] 提出了 “ 电致变色 ” 的概念。到 1969 年 , 美国科学家 Deb [3] 首次报道了非晶态三氧化钨 (Tungsten Trioxide, WO 3 ) 的电致变色效应。随后 , 人 们开始对电致变色材料进行了广泛而深入的研究。 20 世纪 80 年代 , “ 智能窗 ” 概念提出后 [4] , 由于节能环 保、智能可控等优点 , 形成一波新的电致变色技术研究 热点 [5-10] 。随着研究的深入 , 特别是纳米技术的快速 发展 , 器件性能得到了大幅的提升 ( 图 1(a)) [11-13] , 电 致变色器件 (Electrochromic Device, ECD) 也逐渐实现 了产业化应用。 根据材料种类不同 , 电致变色材料可大致分为 有机电致变色材料和无机电致变色材料。相较而言 , 有机电致变色材料具有变色速度快、柔性好、可加 工性强和颜色变化丰富等优点 , 主要包括导电高分 子、紫罗精类小分子和金属有机螯合物等 [14] 。无机 电致变色材料具有光学对比度高、光学记忆性好和 环境稳定性高等优点 , 主要包括过渡金属氧化物以 及普鲁士蓝等 [15] 。目前 , 电致变色器件的结构主要 为类三明治结构 , 由两个透明导电层中间夹一层电 致变色活性层构成。根据电致变色材料种类不同 , 电致变色活性层可分为整体结构和分层结构。整体 结构是电致变色材料与电解质相互混合为一层 , 这 类结构主要针对紫罗精等小分子有机物。这类器件 在外加电场作用下 , 有机小分子扩散到电极表面或 以电解质中氧化还原剂为媒介发生氧化还原反应而 实现颜色变化 [16] 。分层结构是电致变色材料、电解 质和对电极 ( 或叫离子储存层 ) 依靠界面接触分层 ,
在伤口愈合过程中,电信号在细胞对组织损伤的反应中起着至关重要的作用,外部电场 (EF) 可以加速愈合过程。在这里,我们开发了一种独立的、可穿戴的、可编程的电子设备来管理良好控制的外源性 EF,旨在加速体内小鼠模型中的伤口愈合,以提供临床前证据。我们通过组织学染色评估上皮化率和 M1/M2 巨噬细胞表型的比率来监测愈合过程。经过三天的治疗,M1/M2 巨噬细胞比率下降了 30.6%,与对照组相比,EF 治疗伤口的上皮化趋势呈非统计显著的 24.2% 增加。这些发现表明该装置通过促进修复性巨噬细胞而非炎性巨噬细胞来缩短炎症期,并加速上皮化。我们的可穿戴设备支持将程序化 EF 应用到体内伤口管理的理论基础,并为进一步开发基于调节巨噬细胞和炎症以更好地愈合伤口的技术提供了令人兴奋的基础。
这样,Transpower 就可以继续使用其资产,对其进行维护和故障恢复活动,同时将开发商在太阳能发电场的自有资产受损的风险降至最低。与国家电网保持适当的距离具有重要的安全优势,例如防止财产损失和人员伤害风险。对于电池储能系统 (BESS),Transpower 资产面临的风险是火灾和相关烟雾,这两者都可能损坏国家电网资产并导致停电。在发生火灾时,仅仅将 BESS 放置在 NGY 之外可能还不够,因此已经制定了 BESS 的具体距离值(见表 1)。
摘要:电池存储的快速发展和增长引起了人们对将电池储能系统 (BESS) 与可再生能源项目共置的兴趣,这可以叠加多种收入来源,同时降低 BESS 的连接费用。为了帮助风能行业更好地了解 BESS 和风电场的协调运行及其相关利润,本文开发了一个模拟模型来实施多种协调策略,其中 BESS 提供增强频率响应 (EFR) 服务并实现基于英国视角的风力发电时间转移。所提出的模型还模拟了锂离子电池的退化,并结合了从恒定电流-恒定电压充电曲线得出的充电状态 (SOC) 依赖的充电率限制。此外,本文在模拟模型的基础上开发了一种基于粒子群优化的电池尺寸算法,以确定共置 BESS 的最佳尺寸以及 SOC 相关策略变量,从而最大化 EFR 合同结束时风电 + BESS 系统的净现值。
经过近三十年的国际深入研究,碳纳米管 (CNT),尤其是单壁纳米管 (SWNT),仍然是纳米科学和量子科学研究的强大动力。这种典型的一维纳米科学物体具有各种电学、光学和机械特性,催生了大量的应用。这些应用面临的主要障碍是将高质量、合适的 CNT 定位和组织到特定的架构中,同时保留其优异的性能,这些性能通常与其晶体质量和高纵横比有关。因此,一条通往具体科学问题和应用的突出研究方向是寻找对齐、选择、定位和完善 SWNT 的策略 [1, 2, 3]。应用包括柔性高温电子器件、光电子器件和热电器件 [4]、纳米流体 [5]、终极纳米级晶体管 [6, 7]、纳米力学 [8]、扫描探针尖端 [9]、量子力学系统 [10] 和场发射 (FE) 源 [11]。为了通过更好地控制生长来克服主要障碍,显然首先希望在原子尺度上观察单个 CNT 的时间分辨生长,其次希望找到控制这种生长的有用工具,如果可能的话,最好是动态控制。对于这种控制,需要不同的外力,如电场 [12]、气流 [13]、与原子台阶的相互作用
摘要:本文研究了轴向施加电场下圆柱形量子点结构的电子学与光学特性,选取四种不同的轴向双曲型势。考虑了一个位置相关的有效质量模型,在求解特征值微分方程时既考虑了有效质量在轴向随约束势变化的平滑变化,也考虑了其在径向的突变。特征值方程的计算同时考虑了狄利克雷条件(零通量)和开边界条件(非零通量),在垂直于施加电场方向的平面内实现,这保证了本文结果对于具有极高寿命的准稳态的有效性。采用对角化法结合有限元法,找到了圆柱形量子点中约束电子的特征值和特征函数。用于求解微分方程的数值策略使我们能够克服异质结构边界平面和圆柱面相交区域中边界条件存在的多个问题。为了计算线性和三阶非线性光学吸收系数以及折射率的相对变化,我们使用了密度矩阵展开中的两级方法。我们的结果表明,通过改变结构参数(例如轴向电位的宽度和深度以及电场强度),可以调整所关注结构的电子特性和光学特性,以获得适合特定研究或目标的响应。