作为转换器的其余部分。设计师必须依靠制造商的设备型号(如果有)。由于其热性能低和电流能力有限,因此长期以来,PCB一直限于低功率转换(通常为10或100瓦,用于消费者的功能)。最近的改进,例如PCB嵌入技术[5],可以在PCB中插入电源设备,或者厚铜层的可用性使PCB对多千瓦范围的转换器的吸引力更具吸引力(3。在[6]中为3 kW,或[7]中的50 kW)。结果,一个完整的转换器(包括电源,控制等)可以仅使用PCB进行互连,并带有裸露的DIES功率半导体设备。此“合理化”组件的一个结果是,有关转换器的所有信息都可以在PCB设计软件[8]中可用:布局的完整说明,材料清单(组件列表)等。从理论上讲,可以使用此信息来生成模型(热,电气等)以自动化的方式。实际上,从PCB设计软件中生成模型并不是一件容易的事:除了上述复杂性问题外,模型准备还需要大量的用户交互。最近,霍夫曼等人。[9]提出了一种解决方案,该解决方案允许用户在PCB中选择导体并自动计算寄生电感,电阻和焦耳加热;该论文的目的是通过快速计算算法以及仅将域仅减少到几个导体,提供“立即的价值量化”。相比之下,我们此处提出的方法旨在为整个PCB生成模型(以更长的计算时间为代价)。一旦完成PCB设计,就计算了每个轨道的寄生元件(电容,电阻,电感及其耦合),并将计算在电路模型中,并插入PCB的所有组件,以构成电路的完整“虚拟原型”。
1. Y. Shabany,《热传递:电子热管理》,CRC Press,2009 年。2. K. Azar,《电子冷却中的热测量》,CRC Press,1997 年。3. S. Kakac、H. Yuncu、K. Hijikata,《电子系统冷却》,Kluwer Academic Publishers。4. D. Reay、P. Kew、R. McGlen,《热管:理论、设计和应用》。5. ButterworthHeinemann,2014 年。J. Sergent,《热管理手册:电子组件》,
Introduction ............................................................................................................................................................................................................. 2
消费电子产品的快速发展已大大改变了医疗保健局势,使个性化医学更容易获得和高效。可穿戴设备,智能手机和家庭健康监测系统等设备现在是日常生活中不可或缺的组成部分,可以持续健康监测,个性化治疗和实时患者反馈。但是,这些设备生成的大量数据在处理,隐私和集成方面提出了重大挑战。传统的集中机器学习方法与该数据的分布性质和医疗保健中严格的隐私要求斗争。
2. 根据在线申请表准备您的提案:https://radnext-ta-portal.web.cern.ch ✓ 200 字的摘要 ✓ 三个部分的描述:卓越性 - 影响 - 项目实施 这些将是您的提案的三个评估支柱 还要添加所需的光束参数 考虑资格标准(参见申请表)
Hi-Rel Power Solutions Military hermetic hybrid DC/DC-converters 5W to 120W, single, dual, triple versions Space rad-hard hermetic hybrid DC/DC-converters 5W to 120W, single, dual, triple versions, TID 100krad, SEE 82MeV MIL-PRF-38534 DLA qualified, SMD part number available New space rad tolerant hermetic混合DC/DC转换器25W,40W,单个,双版本,最高30Krad,最多可与他们的Hermetic Hermety Hybrid DC/DC转换器相互补充,可提供一系列输入电压和包装rad-Hard和Rad Tollerant PCB的DC/DC CORESTERS,并与CELUTION TRERTERS一起定制,并将其定制为CYERTER,并将Quad,Octo版本,输出功率5w至400W,TID 100KRAD,请参阅60mev
经过半个世纪的微型化,微电子技术面临着两大问题,即缩小尺寸极限和能耗。为了克服这些挑战,新策略的探索包括寻找新材料、新物理和新架构。在此背景下,量子材料引起了广泛关注。特别是,作为一类广泛的量子材料的莫特绝缘体,根据传统的能带理论预计是金属的,但由于现场电子-电子排斥而具有绝缘性。在这样的系统中,电子掺杂或外部压力可能会驱动绝缘体到金属的转变 (IMT),并导致高 Tc 超导或巨磁电阻等显著特性。在过去的几十年里,莫特绝缘体中的填充或带宽控制 IMT(即莫特转变)一直是基础研究的热门话题 [1]。然而,由于一个非常简单的原因,这些 IMT 在应用中的使用仍然相当稀少。事实上,在实际设备中,压力或掺杂并不是容易控制的参数。我们 IMN 的研究小组证明,电场是破坏莫特绝缘状态并诱导绝缘体向金属转变的有效参数 [2]。我们首先证明了单晶上的非挥发性和可逆性转换,并进一步在多晶薄层上验证了莫特绝缘体家族的几个成员的转换 [3]。这种现象被称为“电莫特转变”(EMT),在微电子应用方面前景广阔,并可能为基于莫特绝缘体的新型电子器件打开大门,称为 Mottronics [4]。进一步的研究表明,这种 EMT 是由大量热电子的产生引起的,导致丝状导电路径内发生电子雪崩 [5]。我们证明了这种机制正在驱动具有不同化学成分的多种莫特绝缘体中的 EMT,例如硫族化物 AM 4 Q 8(A=Ga、Ge;M=Nb、V、Ta、Mo;Q=S、Se、Te)和 Ni(S、Se) 2、氧化物 (V 1-x Cr x ) 2 O 3 和分子系统 Au(Et-thiazdt) 2 [6]。非挥发性 EMT 的特性适合于信息存储:“莫特存储器”与基于金属氧化物 (OxRAM) 或相变材料 (PCRAM) 的 ReRAM 相比显示出明显的优势 [7]。此外,我们还表明,受到一连串电脉冲作用的莫特绝缘体可能基于挥发性 EMT 表现出泄漏集成和起火行为。因此,莫特绝缘体可以复制人类大脑中神经元的主要功能,这使得它们可能适合构建人工神经元和硬件人工神经网络 [8]。一个有趣的颠覆性解决方案确实是用节能的人工神经元和突触“硬件”网络(即基于莫特绝缘体的构建块)取代能源密集型的软件网络。从长远来看,我们最近基于超快激光的研究表明,在基于 Mott 绝缘体的电光或全光设备中,可以实现皮秒范围内的最终切换时间 [9]。本演讲将首先回顾电 Mott 跃迁以及此特性所实现的新功能。然后,它将介绍一些 Mottronics 设备的示例,特别是用于数据存储和人工智能应用的示例。
Lidia Galabova,保加利亚索非亚技术大学 Rossen Radonov,保加利亚索非亚技术大学 Elitsa Gieva,保加利亚索非亚技术大学 Marin Hristov,保加利亚索非亚技术大学 Ivan Yatchev,电子、电气工程和电信联盟 (CEEC) Valentina Markova,IEEE 保加利亚分会主席,保加利亚 Dimitar Arnaudov,保加利亚索非亚技术大学 Ivailo Pandiev,保加利亚索非亚技术大学 George Angelov,保加利亚索非亚技术大学 Ivelina Ruskova,保加利亚索非亚技术大学 Nikolay Hinov,保加利亚索非亚技术大学 Mihaela Georgieva,保加利亚索非亚技术大学 Georgi Nikolov,保加利亚索非亚技术大学 Katya Asparuhova,保加利亚索非亚技术大学
•高露山大学,纽约州哈姆尔顿•MIT和MIT LL,马萨诸塞州波士顿•Nist,Boulder,Co•UCSD,UCSD,UCSD,加利福尼亚州圣地亚哥,加利福尼亚州•USC,加利福尼亚州洛杉矶,加利福尼亚州•Suny Stony Brook,Suny Stony Brook,Stony Brook ny•Yokohama University,Yokohama University,Yokohama,Yokohama,Japan,Tohoku,Tohoku,Tohoku,tohoku dive,•