电流[12–14]。此外,铜铁矿 PdCoO 2 和 PtCoO 2 被证明是导电性最强的氧化物。例如,Kushwaha 等人 [15] 在室温下测定了 PtCoO 2 的电阻率ρ低至 2.1 µΩ cm,这是迄今为止报道的氧化物的最低值。此外,在低温下,其电导率接近 Cu、Ag 和 Au 等金属的电导率。[15,16] 这些铜铁矿由二维 Pd 和 Pt 片组成,通过八面体配位的 CoO 2 连接。由于这种结构,它们的电导率具有强烈的各向异性,并且在 (ab) 平面内最高。此外,Kitamura 等人[17] 通过从头计算预测了 PtCoO 2 中存在较大的本征自旋霍尔效应,这使其成为一种有趣的材料,可用于制造铁磁赛道等自旋电子器件,在这些器件中,自旋霍尔效应可用于产生自旋电流。[18–22]
短期课程分为四个部分,均包含入门材料和高级主题。第一部分介绍电子辐射效应的基本机制,重点介绍各种设备和技术的位移损伤。第二部分重点介绍 MOS 晶体管中的总电离剂量引起的退化,讨论这些效应随着 CMOS 制造技术的进步而演变。第三部分介绍电子器件中的单粒子效应,并讨论用于在实验室中重现应用中观察到的故障机制的测试方法。最后一门课程介绍了对光子材料、设备和集成电路的影响,重点是光学材料、光纤、图像传感器和探测器像素阵列。下面提供了每个讲座的更详细描述。所涵盖的主题应能为该领域的新手以及经验丰富的工程师和科学家提供最新的材料和见解。
印刷有机和无机电子器件在传感器、生物电子学和安全应用中继续受到广泛关注。尽管印刷技术通常具有数十微米范围内的典型最小特征尺寸,并且需要在高温下进行后处理程序以增强功能材料的性能,但人们已经研究了许多印刷技术。在此,我们介绍了使用三种不同油墨(半导体 ZnO 以及金属 Pt 和 Ag)进行激光打印,这是一种制造最小特征尺寸低于 1 µ m 的印刷功能电子设备的简便方法。ZnO 打印基于激光诱导热液合成。重要的是,这三种材料中的任何一种在激光打印后都不需要进行任何类型的烧结。为了证明我们方法的多功能性,我们展示了功能二极管、忆阻器和基于 6 × 6 忆阻器交叉结构物理上不可克隆的功能。此外,我们通过结合激光打印和喷墨打印实现了功能晶体管。
(2)先进材料是指通过专门的加工合成技术开发而产生的具有工程特性的材料,包括陶瓷、高附加值金属、电子材料、复合材料、聚合物和生物材料。(3)生物技术是指应用重组DNA技术、生物化学、分子和细胞生物学、遗传学和基因工程、细胞融合技术和新的生物工艺等技术,利用生物体或生物体的部分来生产或改造产品,改良植物或动物,开发用于特定用途的微生物,确定小分子药物开发的目标,或将生物系统转化为有用的过程和产品或开发用于特定用途的微生物。(4)电子器件技术是指涉及微电子、半导体、电子设备和仪器、射频、微波和毫米波电子、光学和光电器件以及数据和数字通信和成像设备的技术。 (5)环境技术,是指对人类健康或环境的威胁或损害的评估和预防、环境清理、以及替代能源的开发。
可拉伸电子器件对于下一代智能交互系统的开发具有重要意义。在此,我们提出了一种无顶栅电极的本征可拉伸有机摩擦电子晶体管 (SOTT),它由可拉伸衬底、银纳米线电极、半导体混合物和非极性弹性体电介质组成。SOTT 的漏源电流可以通过与电介质层的外部接触通电来调制。在与通道方向平行和垂直的 0-50% 拉伸下,SOTT 保持了出色的输出性能。在拉伸至 50% 数千次后,SOTT 仍能保持出色的稳定性。此外,SOTT 可以贴合地附着在人的手上,可用于人机交互中的触觉信号感知以及控制智能家居设备和机器人。这项工作实现了可拉伸摩擦电子晶体管作为智能交互的触觉传感器,扩展了摩擦电子在人机界面、可穿戴电子产品和机器人技术中的应用。
神经形态计算有望通过模仿人脑结构和功能的高效设备和电路为人工智能带来卓越功能。传统 CMOS 晶体管仅提供易失性开关,而新兴非易失性存储器技术提供的非易失性模拟行为有望成为神经形态计算系统的潜在硬件组件。特别是,忆阻器和自旋电子器件(其中除了电子电荷外还操纵电子自旋)因其仿生特性而受到广泛关注。在这个三讲的教程中,我将描述和分析在神经形态计算系统中使用自旋电子和新兴技术模拟神经生物学行为的各种技术。与遵循从物理到整个系统性能的单个设备垂直集成的传统演示不同,本课程评估了各种神经形态计算范例在人工神经网络中利用新兴技术行为的有效性。
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,这使得在较小的电荷载流子密度下可以有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上具有发展前景的可扩展外延石墨烯需要分子掺杂,而分子掺杂在环境条件下通常是不稳定的,以补偿来自 SiC 衬底的电子转移。在这里,我们采用了有机电子器件中常见的经典玻璃封装,以使分子掺杂的外延石墨烯对空气中的水和氧分子钝化。我们已经研究了玻璃封装设备中霍尔量子化的稳定性近 1 年。经过近一年的多次热循环,霍尔量子化保持在阈值磁场之上,小于 3.5 n Ω Ω − 1 的测量不确定度,而普通未封装的器件在空气中放置 1 个月后明显显示出与标称量子化霍尔电阻的相对偏差大于 0.05%。
二维拓扑绝缘体又称量子自旋霍尔绝缘体,具有受拓扑结构保护的边缘态[1]。由于该通道可支持无耗散电子传输,有望实现下一代低损耗电子器件,得到了广泛的研究[2−4]。自2006年起,斯坦福大学Zhang团队预言在HgTe/CdTe量子阱中存在量子自旋霍尔效应(量子自旋霍尔效应,QSH)[5]。次年,维尔茨堡大学物理研究所Molenkamp团队的实验证实了这一点[6]。研究人员进行了大量的理论预测和实验探索,以寻找更加实用的天然QSH材料[7−9]。与复杂量子阱结构相比,天然QSH材料在样品制备和异质结器件构筑方面更具有优势。但在天然单层二维体系中实现QSH效应仍然十分困难,自上而下的机械剥离法和自下而上的外延生长法是成功制备单层QSH材料的两种常用方法。
摘要 针对第六代(6G)移动通信应用,提出了三种新型五阶超紧凑发夹带通滤波器。发夹单元的臂采用三维集成技术(TSV)实现,部分发夹单元由四个臂组成。本文介绍了这三种滤波器的设计方法,并通过基于有限元法的工业级仿真器HFSS验证了滤波特性。结果表明:所设计的三个滤波器的中心频率分别为0.405 THz、0.3915 THz、0.3955 THz,带宽分别为0.1 THz、0.077 THz、0.063 THz,插入损耗为2.0 dB,回波损耗分别为12.4 dB、13.4 dB、14 dB。所设计的三个滤波器的尺寸均为0.284×0.0325 mm2(1.29×0.148λg2)。关键词:第六代(6G)移动通信、太赫兹(THz)频段、发夹带通滤波器、硅通孔(TSV)分类:电子器件、电路和模块(硅、化合物半导体、有机和新材料)
摘要 本研究利用脉冲激光研究了不同电源电压、时钟频率和电路结构下时序逻辑电路对单粒子翻转 (SEU) 的灵敏度。实验的时序逻辑电路是采用 65 nm 体 CMOS 工艺制作的 D 触发器链。结果表明,随着电压的降低,电路的 SEU 灵敏度增加,尤其在低电压范围内,灵敏度增加显著。此外,时钟频率对时序逻辑电路灵敏度的影响主要与组合逻辑电路中产生的单粒子瞬变 (SET) 的传播有关。研究还发现,Set 架构电路在数据“0”测试期间对 SEU 更敏感,而 Reset 架构电路在数据“1”测试期间对 SEU 更敏感。此外,还利用 SPICE 模拟揭示了由 Set 结构和 Reset 结构引起的 SEU 故障机制。关键词:脉冲激光、单粒子翻转 (SEU)、电压、频率、电路结构分类:电子器件、电路和模块(硅、复合半导体、有机和新型材料)