实习标题:研究用于电子显微镜的基于里德堡原子电离的脉冲电子源摘要通过将(专利)单能电子源与高性能探测器相结合,我们正在与 ISMO 和 SPEC 实验室合作建造一种独特的电子显微镜,该显微镜能够同时进行空间成像和对所研究表面的振动相互作用进行分析。该 HREELM(高分辨率电子能量损失显微镜)显微镜结合了对表面成像的电子显微镜的特性和电子能量分析仪的特性。因此,应用领域非常广泛,涵盖纳米物理学、纳米化学、光子学和微电子学。为了生产第一个原型,我们必须在实习期间展示我们的脉冲源(分辨率~5 meV)在低能量(10 eV)下的单动力性质,并成功逐像素获取能量谱。因此,实习将包括使用快速多像素探测器(~1ns)通过飞行时间来分析产生的电子源。将测试各种来源:要么直接光电离铯原子射流,要么通过脉冲电场激发和电离它,要么通过在激发原子(称为里德堡原子)之间进行振荡微波传输。所有现象的量子建模也将成为实习的一个重要组成部分,可以作为论文继续进行。通过将(专利)单能电子源与高性能探测器相结合,我们与 ISMO 和 SPEC 实验室合作,建造了一种独特的电子显微镜,能够同时进行空间成像和对所研究表面的振动相互作用进行分析。该 HREELM(高分辨率电子能量损失显微镜)结合了对表面成像的电子显微镜的特性和电子能量分析仪的特性。因此,应用领域非常广泛,涵盖纳米物理学、纳米化学、光子学和微电子学。为了实现第一个原型,我们必须在此阶段展示我们的脉冲源(分辨率~5 meV)在低能量(10 eV)下的单动力学特性,并成功逐像素获取能量谱。因此,该阶段将使用快速(~1ns)多像素探测器通过飞行时间来分析产生的电子源。将测试各种光源:要么直接光电离铯原子束,要么通过脉冲电场激发和电离它,要么通过在激发原子(称为里德堡原子)之间进行振荡微波传输。所有现象的量子建模也将成为实习的一部分,并可在攻读博士学位时继续进行
使用小型卫星进行低成本空间应用,高分辨率的地球观察,电磁波(X射线,红外线等)的观察器,从天体物体发出的电磁波(X射线,红外线等),甚至是从重力波的观察到。这些任务的推进系统要求包括较大的脉冲和功耗的全部冲动,高响应速度,3位数字投掷范围和低推力噪声。1)以低推进剂和功耗的大量总脉冲,具有发射阴极的离子元素适合作为主要推进系统。对于小型卫星应用,2)功耗是一个重要因素。是电子源的吸引力候选者,因为它的功耗低于传统的阴极(例如空心阴极,微波炉放电阴极或射电频率放电阴极),并且不构成推动力。 它也不涉及容易产生故障的部件,例如阀门和质量流控制器。 电流密度是电子源的吸引力候选者,因为它的功耗低于传统的阴极(例如空心阴极,微波炉放电阴极或射电频率放电阴极),并且不构成推动力。它也不涉及容易产生故障的部件,例如阀门和质量流控制器。电流密度
时间分辨电子显微镜引起了人们的极大兴趣,可用于研究空间分辨率低于光学衍射极限的超快分子、表面和体积动力学[1–8]。为了实现最佳成像条件,需要精确控制自由电子的发射和传播,这些控制现在也推动了电子-物质相互作用实验[9–14]和显微镜设计[15–18]的进步。对于任何电子显微镜,由于稳定性、相干性以及空间、时间和光谱分辨率之间的权衡,电子发射器和发射机制的选择限制了可实现的成像条件。包含大量电子的短脉冲可用于减少显微镜的曝光时间,并且是生成不可逆动力学的单次图像所必需的,这需要每个脉冲多达 10 9 个电子,但库仑相互作用会展宽大电流脉冲的空间和能量分布,增加像差并降低分辨率[5]。在较长的脉冲中,这些效应会被抑制,大量电子可以在纳秒脉冲包络内传播,同时仍能保持研究相变、反应动力学和蛋白质折叠等过程所需的时间分辨率[19–22]。此外,纳秒脉冲非常适合依赖快速电子门控的仪器,如多通透射电子显微镜[23–25]。这些脉冲可以通过使用光束消隐器及时过滤电子束来产生,也可以通过短激光脉冲触发发射[26]。消隐器通常与连续电子源集成在一起,可以模糊或位移电子束[27]。或者,激光触发需要对电子源进行光学访问,但会引入不同的自由度来控制光发射脉冲的电流、时间持续时间和能量扩展。
最近的实验进展使得单电子激发的受控创建和操纵成为可能。这些单电子是量子信息处理的有希望的候选者,因为它们具有可扩展性和与现有设备集成的潜力。对于许多量子信息处理任务,纠缠是关键因素。因此,任何平台执行非平凡量子信息处理任务都需要受控地创建、检测和操纵纠缠。在这次演讲中,我将介绍使用单电子源创建纠缠的理论工作。我将进一步介绍如何使用贝尔不等式检测这种纠缠,以及如何利用现有技术将其用于量子隐形传态。
时间分辨的电子显微镜在研究以下的空间分辨率下,对超出光学差异极限的空间分辨率的超快分子,表面和散装动力学的研究引起了极大的兴趣[1-8]。要达到最佳的成像条件,需要精确控制自由电子的发射和传播,并且这些控制权现在也可以在电子 - 摩擦相互作用实验[9-14]和显微镜设计方面进步[15-18]。对于任何电子显微镜,电子发射器的选择和发射机制都会限制由于稳定性,相干性和空间,时间和频谱分辨率之间的交易所带来的可实现的成像条件。可以使用大量电子的短脉冲来减少显微镜的暴露时间,并且对于产生不可逆动力学的单拍图像是必不可少的,每脉冲需要多达10 9个电子,但是库仑相互作用范围扩大了空间和能量的高度脉冲,高脉冲的脉冲,增加Aberra-Tions和降低的脉冲[5]。这些效应在较长的脉冲中被压缩,并且大量电子可以在纳秒脉冲包膜内传播,同时仍保持研究过程所需的时间分辨率,包括相变,包括相变,反应动力学,反应动力学和蛋白质折叠[19-22]。此外,纳米脉冲脉冲非常适合依靠电子速度走门控的仪器,例如多通透射电子显微镜[23-25]。这些脉冲可以通过及时用梁覆盖的时间过滤到电子束来产生,也可以通过短激光脉冲触发发射[26]。覆盖物与连续电子源完全集成,并且可以模糊或置换电子束[27]。另外,激光触发需要对电子源的光学访问,但引入了不同的自由度,以控制光脉冲的电流,时间持续时间和能量传播。
64 Brno,捷克共和国。 doi:https://doi.org/10.47011/17.2.9接收到:15/02/2023;接受:30/07/2023摘要:在过去的几十年中,环氧树脂已显示出几种优势作为现场发射电子源的涂料材料;这包括降低施加电压的操作以及启动电子排放过程所需的阈值电压。 这项研究说明了使用树脂2301环氧树脂作为现场发射发射器的涂料材料的结果。 结果包括紫外线光谱分析,以获得固化涂层层的局部工作函数和电离能的平均值。 在用固化的环氧树脂涂层之前和之后,使用扫描电子显微镜检查样品。 此外,以全面比较的形式介绍了未涂层的钼和复合钼 - 环氧样品的田间发射显微镜特征。 研究显示了通过涂料材料的应用增强现场排放特性的有希望的结果。 值得注意的是,阈值电压显着降低。 发现来自涂层样品的发射电流值至少是未涂层样品的发射电流值。64 Brno,捷克共和国。doi:https://doi.org/10.47011/17.2.9接收到:15/02/2023;接受:30/07/2023摘要:在过去的几十年中,环氧树脂已显示出几种优势作为现场发射电子源的涂料材料;这包括降低施加电压的操作以及启动电子排放过程所需的阈值电压。这项研究说明了使用树脂2301环氧树脂作为现场发射发射器的涂料材料的结果。结果包括紫外线光谱分析,以获得固化涂层层的局部工作函数和电离能的平均值。在用固化的环氧树脂涂层之前和之后,使用扫描电子显微镜检查样品。此外,以全面比较的形式介绍了未涂层的钼和复合钼 - 环氧样品的田间发射显微镜特征。研究显示了通过涂料材料的应用增强现场排放特性的有希望的结果。值得注意的是,阈值电压显着降低。发现来自涂层样品的发射电流值至少是未涂层样品的发射电流值。
摘要在本文中,通过金属 - 有机化学蒸气沉积和P型欧姆接触而生长了基于GAN的betavoltaic外延结构,以不同的Ni/Au金属厚度比,n 2:O 2:O 2(1:1)的温度依赖于这种同种疗程的n 2:o 2:o 2(1:1)的温度。转移长度方法测量是在每个不同的过程条件后进行的,以检查特定的接触电阻率。GAN的BETAVOLTAIC电池,并将扫描电子显微镜(SEM)用作测试这些设备的电子源。为此,将连接到印刷电路板连接的设备暴露于1.5 Na的电子电流,而SEM中的17 keV能量。对于1×1 mm 2设备,在0 V时的暗电流值为2.8 pa,填充系数为0.35,最大功率转换效率为3.92%,最大输出功率为1 µW。
摘要 — 紫外 (UV) 激光器被提议作为无接触航天器电位传感中低能电子束的替代品。由于它们对静电环境不敏感,理论上支持将其用作光电子源,从而实现更稳健和可控的系统。在代表性应用场景中验证了该方法的可行性,并讨论了其与航天器电荷控制和材料识别的相关性。提出了一种简化的光发射框架,并通过粒子追踪模拟用真空室实验进行了验证,表明这种框架可用于确定从目标表面发出的光电子的空间分布及其幅度的合理估计。还讨论了将此方法与高能电子束相结合的可能性,以增强传感过程的稳健性和准确性。最终,该分析支持在地球同步轨道和深空的各种航天器充电技术中使用紫外激光器。
地址,字幕:一般药理学和毒理学的实践,通用医学专业学生的锻炼指示,牙科医学和药房。作者:助理。dr。助理Katarinačerne。dr。 Ilonka Ferjan,教授。博士MojcaKr间教授。博士方法lipnik-štangelj,协会。教授。博士Lovro Stanovnik,助理。dr。 LovroŽibernaIllustrator:MaticKržan摄影师:BogdanMartinč和评论者:助理。dr。 Sergei Pirkmajer,助理。dr。关于发行或印刷的Miran Brvar数据:1。出版的出版商:卢布尔雅那大学,医学院,药理学与实验毒理学研究所Vrazov TRG 2,1000卢布尔雅那,斯洛文尼亚。结果的地点:卢布尔雅那出版年:2015年发行(有关印刷副本数量的信息):电子源出版物将以PDF格式为电子。将位于:http://www.mf.uni-lj.si/media-library/09/afx7a5f9e8629672b7b7bd9wht20255.pdf出版物单零售价:免费访问
上述项目ID ID FIS-2023-02406杯D53C24005490001由MUR通过Bando Fis 2(Advanced la Scienza)资助,旨在建造和运营全新的2D量子材料电子光谱实验室。主要的新颖性是在紫外光子能量范围内起作用的角度逆光发射(ARIPES)设备的构造,其前所未有的分辨率优于40 MeV。该系统将与更传统的角度分辨光发射系统(ARPE)耦合,在与参考技术的相同范围内。单色电子源的可用性(ARIPES所需)和电子分析仪(用于ARPES)允许在同一样品和同一设备中实现电子能量损耗光谱(EELS)测量。ARPE,ARIPES和EEL的组合可以使量子材料的量子态在费米水平以下和高于量子状态的量子状态有效2-维电子结构中的完全观察。此外,鳗鱼可以在费米水平上提供2个粒子光谱函数。最后,在同步梁线上以相似分辨率执行的共振非弹性X射线散射(RIX)可以通过确定诸如Phonons和Magnons之类的集体激励来补充在“上面F”实验室中测得的数据。