摘要:缺乏针对DNA对带电颗粒辐射的电子激发反应的分子级别的理解,例如高能质子,仍然是推进质子和其他离子束癌疗法的基本科学瓶颈。尤其是,不同类型的DNA损伤对高能质子的依赖性代表着重要的知识空隙。在这里,我们使用大量平行的超级计算机采用第一原理实时依赖时间依赖性密度函数理论模拟,以揭示从高能质子到水中DNA的能量传递的量子力学细节。计算表明,质子在DNA糖 - 磷酸侧链上的沉积能量明显多于核仁酶,并且预期在DNA侧链上的能量转移大于水。由于这种电子停止过程,在DNA侧链上产生了高能孔,作为氧化损伤的来源。
摘要 使用液态氙作为靶材的探测器被广泛应用于稀有事件搜索。关于相互作用粒子的结论依赖于对沉积能量的精确重建,而这需要借助放射源对探测器的能量标度进行校准。然而,微观校准,即将激发量子数转换为沉积能量,也需要充分了解在液态氙中产生单个闪烁光子或电离电子所需的能量。这些激发量子的总和与靶材中沉积的能量成正比。比例常数是平均激发能量,通常称为 W 值。在这里,我们展示了在带有混合(光电倍增管和硅光电倍增管)光电传感器配置的小型双相氙时间投影室中通过电子反冲相互作用对 W 值进行测量的方法。我们的结果基于在 O (1 − 10 keV) 处使用内部 37 Ar 和 83m Kr 源以及单电子事件进行的校准。我们得到的值为 W = 11 . 5 + 0 . 2 − 0 . 3 ( syst .) eV,统计不确定性可忽略不计,低于之前在这些能量下测量的值。如果得到进一步证实,我们的结果将与模拟液态氙探测器对粒子相互作用的绝对响应相关。
migdal效应[1],其中核散射在理论上诱导了原子,分子或固体中的电子激发,但从未在实验中得出结论。主要的挑战是与弹性散射相比非常小的速率,结合了将原发性米格达事件与普通弹性核削减后的二次电子激发或电离的难度。已经提出了Migdal效应来搜索子GEV暗物质,以此作为一种通过电子激发信号逃避核后坐力阈值的方法[2-16],但首先必须使用标准模型探针观察到这种效果以校准它[17-21]。在本文中,是出于与暗物质检测相关的分子migdal效应的最新发展的动机[22],我们提出了一个新概念来测量Migdal效应。低能(〜100 eV)中子束用于通过分子气中的核散射(例如碳一氧化碳(CO))诱导结合的Migdal转变,概率约为每个中子散射事件,导致紫外线的发射和可见光子的发射
伦敦学院,高尔街,伦敦,WC1E 6BT,英国# 通讯作者:d.duffy@ucl.ac.uk 摘要 预测材料在各种辐照场景下结构变化的能力将对许多科学和技术领域产生积极影响。现有的大型原子系统建模技术(如经典分子动力学)因忽略电子自由度而受到限制,这限制了它们的应用范围,即主要与原子核相互作用的辐照事件。另一方面,从头算方法包括电子自由度,但所需的计算成本限制了它们在相对较小的系统中的应用。旨在克服其中一些限制的最新方法发展基于将原子模型与电子能量连续模型相结合的方法,其中能量通过电子停止和电子-声子耦合机制在原子核和电子之间交换。这种双温度分子动力学模型使得模拟电子激发对具有数百万甚至数亿个原子的系统的影响成为可能。它们已被用于研究金属薄膜的激光辐照、金属和半导体的快速重离子辐照以及金属的中高离子辐照。在这篇综述中,我们描述了双温度分子动力学方法及其实施所需的各种实际考虑。我们提供了该模型在适应电子激发的多种辐照场景中的应用示例。我们还描述了在模拟中包括由于电子激发而引起的原子间相互作用的改变的影响所面临的挑战以及如何克服这些挑战。关键词辐射损伤;双温度模型;分子动力学;电子效应;激光辐照;快速重离子
QD是准球形零维纳米材料,这意味着它们在所有三个尺寸中都低于100纳米。在用紫外线照亮时,它们将电子激发到更高的能量状态,从而导致能量作为光的波长发射。1,2由于这种独特的行为和小规模,QD对半导体的cant不可感兴趣。3然而,他们的应用很快被扩展到动物中各种器官的成像剂医学用途。4自然,这需要更加专注于生物蛋白质和降低的细胞毒性,排除传统上使用的元素,例如镉,这可能会导致细胞死亡。5然而,Xu等人的机会发现。纯化纳米管会导致CD到医疗的最前沿。6
用光照射纳米金属会驱动电荷载体(等离子体)的集体振荡和超出等离子体近场衍射极限的光局域化。等离子体的能量在几十飞秒内消散,要么通过光子辐射发射,要么通过电子-空穴激发,产生非平衡载流子分布。近年来,等离子体学的重点是等离子体能量收集。[1–3] 新兴的混合等离子体学领域旨在将金属纳米结构与其他材料(特别是半导体)连接起来,将等离子体转换为具有重大应用的电子激发。混合等离子体装置可用于光收集、光化学、光催化、光电探测器和单分子探测器。[2,4–7] 对于这些应用,辐射损耗是
Mukamel教授的群体兴趣集中在新型超快多维相干光谱方案的设计上,用于在凝结相中探测和控制电子和振动分子动力学;理论和计算研究和应用包括分子的非线性X射线光谱;光学和光子材料的多体理论;用于计算电子激发和共轭聚合物,分子纳米结构,发色团聚集体以及半导体和太阳能电池纳米颗粒的非线性光谱的时间依赖性密度矩阵框架;蛋白质和DNA中的折叠和动态波动;远程电子转移,能量漏斗和集体非线性光学响应的生物光收集复合物;单分子光谱中的光子统计;量子和经典光学响应中的非线性动力学和波动。
轨道状态的变化会大大改变离子及其周围环境之间的耦合。轨道激发是理解和控制离子相互作用的关键。具有较强磁性晶状体各向异性(MCA)的稀有元素是磁性装置的重要成分。因此,控制其局部4 F磁矩和各向异性是超快自旋物理学的主要挑战。随着时间分辨的X射线吸收和谐振非弹性散射实验,我们显示了TB金属表明在光泵泵后发生的4 f-电子激发出现在地基多物种中。这些激发是由非弹性5 d -4 F-电子散射驱动的,改变了4 F轨道状态,因此MCA对4 F金属中的磁化动力学具有重要意义,并且对相关材料中局部电子状态的激发更为普遍。
原理:由于受激发射,光子在每个步骤中成倍增加,从而产生一束强光子,这些光子是相干的并且沿同一方向运动。因此,光通过受激发射的辐射被放大,称为激光。 活性介质 可以实现粒子数反转的介质称为活性介质。 活性中心 原子被提升到激发态以实现粒子数反转的材料称为活性中心。 1.7 泵浦作用 在介质中实现粒子数反转的过程称为泵浦作用。它是产生激光束的基本要求。 泵浦作用的方法 常用于泵浦作用的方法有: 1. 光泵浦(光子激发) 2. 放电法(电子激发) 3. 直接转换 4. 弹性原子 - 原子间碰撞 1. 光泵浦