........非线性网络分析 ........电路故障 ........电气故障检测 ........电路噪声 ........热噪声 ........电路模拟 ........电路综合 ........高级综合 ........集成电路综合 ........协处理器 ........计数电路 ........耦合电路 ........数字电路 ........电路拓扑 ........数字集成电路 ........数字信号处理器 ........分布参数电路 ........驱动电路 ........电子电路 ........面包板 ........中央处理单元 ........多谐振荡器 ........条板电路 ........等效电路 ........反馈 ........反馈电路 ........负反馈 ........神经反馈 ........混合集成电路 ........集成电路 ........模拟集成电路 ........模拟-数字集成电路 ........专用集成电路 ........CMOS集成电路 ........协处理器 ........电流模式电路............数字集成电路............FET集成电路............现场可编程门阵列............混合集成电路............集成电路互连............集成电路建模............集成电路噪声............集成电路合成............大规模集成............MESFET集成电路
自动控制 为了提供自动控制,系统进行了修改,如图 3 所示,以便机器、电子设备或计算机取代人为操作。添加了一种称为传感器的仪器,该仪器能够测量液位值并将其转换为比例信号 s。此信号作为输入提供给称为控制器的机器、电子电路或计算机。控制器执行人为功能,评估测量值并提供输出信号 u,以通过机械联动装置连接到阀门的执行器更改阀门设置。当自动控制应用于图 3 中的系统时,该系统旨在将某个变量的值调节到设定点,这称为过程控制。
产品尺寸以换取其他功能。在这些情况下,可以通过在空气流中最佳排列电子电路或添加热播放器将热量转移到外部包装中来最大化冷却。在个人设备中 - 例如,具有功能强大的微处理器,图形处理单元和高级通信功能的高端笔记本计算机需要采用更多的空间效率冷却策略。为了保持小尺寸和重量,笔记本计算机通常包含低功率的电子组件以较低的频率和性能运行。另一方面,使用高功率组件的高端产品遭受了寿命降低的寿命,这是由于缺乏足够冷却的设备增大而导致的权衡。
● 数字通常以二进制表示,但关键在于它们是离散的(而非连续的)值。传统上,这些二进制数字写为 0 和 1,但在实践中,它们使用电、磁、音频和光学表示。选择两个不同的数字本质上是成本和复杂性的工程权衡(区分两个不同的值比区分 10 个不同的级别更容易),但它与最简单的数字系统是二进制的想法有关(克劳德·香农指出了这一点,并建议“位”也可能代表基本不可分解的单位)。操纵位的基本电路基于布尔逻辑,只有两个值的简单性使可靠的电子电路的构建成本相对较低。
电力电子与电子电路的概念,调节和利用有关,以熟练地管理和转换电能。电力电子设备在维持复杂生产系统的可靠性,效率和安全性方面起着至关重要的作用。此外,在可再生能源系统,电动汽车和工业自动化等各种应用中越来越重要。但是,由于信息和通信技术的整合,现代电力电子系统易受网络和物理异常的影响。到目前为止,已经使用了不同的方法来检测异常。本调查概述了使用机器学习和深度学习方法在电力电子中的最新目的。它突出了这些技术在解决电力电子系统日益增长的复杂性和脆弱性方面的潜力。
这是人类历史上规模最大的制造业。高度复杂的半导体供应链是周期性的和相互关联的,因此很难理清。在过去的几十年里,半导体供应链已经简单地分为三个主要生产步骤,专注于性能和能效创新,同时降低成本和缩小芯片尺寸。首先,工程师设计芯片并精心规划如何构建其电子电路。其次,通过光刻等工艺将芯片设计制造到洁净室中的硅晶片上,微小电路被一层层构建起来。最后,将制造好的芯片从晶片上切下来,封装在保护外壳中,并经过严格测试以确保功能,然后才能集成到电子设备中(参见 CSS 研究)。
软件工具:• 化学过程分析和优化:Aspen Plus。• 生化过程模拟:SuperPro Designer。• 热力学循环和热电厂模拟:EBSILON Professional。• 太阳能热电厂动态模拟:STEC/TRNSYS。• 生命周期评估、LCA 和碳足迹:Simapro 7.2 Professional。• 可持续性分析:GaBi Professional 和 DEA-Solver Pro。• 能源规划和热流体动力学:LEAP。• 过程模拟和数据分析:Matlab-Simulink。• 电力电子电路模拟:PLECS。• 数据采集、过程控制和量热回路:LabVIEW。• 3D 计算机辅助设计:SolidWorks 和 KUDO 3D。• CFD 分析:COMSOL Multiphysics。• 射线追踪:TracePro。• 电力系统:IPSA 和 PowerWorld。• 计算化学:Chemcraft、Gaussian 和 Vasp。
沿温度梯度热扩散的离子热电材料是最近出现的一类新型材料。在这些材料中,离子的热扩散产生的热电压比暴露在相同温度梯度下的经典电子热电材料高几个数量级。电解质如今被视为热电材料,因为它们成本低、热导率低、热稳定性和电稳定性高。[5] 另一个主要优点是工作温度低于 250°C,这包括 50% 的所有产生废热。[6] 沿热梯度热扩散的离子无法进入电子电路,因此会积聚在电极/电解质界面,形成双电层。在对理想超级电容器进行热充电时,存储的电能与热电压二次相关:
在人类历史上大规模提出。高度复杂的半导体供应链是偏重的和互连的,因此很难解开。在最后几个decades中,半导体供应链简单地将三个主要的生产步骤分成了分散,重点是性能和功率效率创新,同时又赋予了成本和芯片大小。首先,工程师设计芯片并精心计划如何构造其电子电路。第二,芯片设计是在洁净室的硅晶片上通过光刻造影等制造的,其中小电路逐层建造。最后,制造的芯片是从晶片上切出的,用保护性壳体包装,并进行了严格测试,以确保在将功能集成到电子设备中之前确保功能(请参阅CSS研究)。
有关信息和沟通技术➝组件小型化:通过激光消融,PVD(物理蒸气沉积)或PECVD或PECVD(血浆增强化学蒸气沉积)组件的组件和微型机械机械系统的薄膜和PECVD(血浆增强的化学蒸气沉积)的沉积微波介电组件,3D电子电路芯片和多功能传感器的印刷,3D微挤出…)➝新尿酸盐基于第二和3阶光学非线性的基于新尿酸盐的玻璃材料➝在这些基于Telluride材料的较大的电源材料➝制造光纤和/或用于/或具有波动的材料的远程材料。 ➝新的铅免费压电 /铁电组成< / div>