(32)紧密结合理论认为价电子更紧密地保持原子,但在整个固体中被视价轨道重叠进行了离域。该模型适用于SI和GE等半导体,ALP和NACL等绝缘体和盐,以及𝑑金属及其化合物。实际上,紧密结合理论与分子轨道(MO)理论具有显着相似之处。电子结构的任何计算都需要选择原子轨道(AO)基集,该集通常是最小的基础集,仅包含价原子轨道。对这些AOS中的每一个都分配了价值轨道能,可以从原子光谱或Hartree-fock计算中进行经验确定,如下所示。10这些能量反映了原子电负性的趋势。然后,构建了这些AOS的对称适应性线性组合(SALC)。在MO理论中,salcs利用分子点群的不可约表示。对于紧密结合理论,使用空间群的晶格翻译亚组的不可约表示构建相应的salcs。 使用这些salcs,构建了有限的Hermitian Hamiltonian Matrix(𝐻)。 在MO理论中,𝐻具有等于分子中基本AO的数量。 在紧密结合理论中,为适当选择的波形构建,其尺寸等于一个单位细胞中的基础AOS数量。 求解特征值(电子能)和本征函数(AO系数)的世俗决定因素产率。在MO理论中,salcs利用分子点群的不可约表示。对于紧密结合理论,使用空间群的晶格翻译亚组的不可约表示构建相应的salcs。使用这些salcs,构建了有限的Hermitian Hamiltonian Matrix(𝐻)。在MO理论中,𝐻具有等于分子中基本AO的数量。在紧密结合理论中,为适当选择的波形构建,其尺寸等于一个单位细胞中的基础AOS数量。求解特征值(电子能)和本征函数(AO系数)的世俗决定因素产率。这些数值结果然后用于生成相关信息和图表。对于MO理论,输出包括MO能量图,确定最高占用和最低的无置置的MOS,即HOMO和LUMO,以及使用AO系数进行电子密度分布和键合分析的人群分析。紧密结合计算的结果产生了状态图的电子密度,这是电子能级的准连续分布,可以分解为来自各种轨道或原子成分的态密度,以及相应的FERMI水平,这是Homo的固态类似物的固态类似物。种群分析也可以进行,并提供用于识别重要键合特征的晶体轨道重叠种群(COOP)或汉密尔顿人群(COHP)图。最后,带结构图或能量分散曲线,这些曲线是沿波向量空间中特定方向的波形绘制的能量。