近年来,银纳米颗粒电极因其稳定性和导电性而被广泛研究,作为可穿戴和柔性电子产品的电极材料。湿化学沉积技术被认为是一种低成本且可扩展的技术。目前基于湿化学的纳米颗粒沉积技术包括电喷雾沉积、滴铸法、旋涂法和喷墨打印工艺。这些技术通常需要单独的沉积后退火步骤。这对于低熔点的基底来说可能是一个问题。此外,上述某些方法需要物理接触,这增加了交叉污染的可能性。在本研究中,我们提出了一种结合电喷雾和激光辐射的技术,可以在刚性或柔性基底上同时沉积和烧结纳米颗粒。在此过程中,银纳米颗粒水相悬浮液的微滴以所谓的微滴模式从金属毛细管喷嘴喷出,喷嘴可通过电位控制。锥形空心激光束用于蒸发液体并将纳米颗粒烧结到基底上的所需位置。与传统的导电微图案制备方法相比,这项技术前景广阔,因为它简化了一步沉积过程,减少了交叉污染,并且适用于各种表面。我们利用功率为 5 至 13 W 的 Nd:YAG 激光器制备了银纳米颗粒薄膜微图案。我们利用扫描电子显微镜、能量色散 X 射线和四探针分析研究了晶粒尺寸分布、成分和电阻率之间的相关性。结果与传统的热烧结方法相当。
∗用于制备本文的相应作者 * *数据部分是从阿尔茨海默氏病神经膜计划(ADNI)数据库(ADNI.LONI.USC.EDU)获得的。因此,ADNI中的调查人员为ADNI和/或提供数据的设计和实施做出了贡献,但没有参与本报告的分析或撰写。可以在以下网址找到ADNI调查人员的完整列表:http://adni.loni.usc.edu/wp- content/uploads/如何应用/adni确认列表.pdf电子邮件地址:afraupascual@mgh.harvard.harvard.edu(aina frau-pascual) dvaradarajan@mgh.harvard.edu(divya varadarajan),ayendiki@mgh.harvard.edu(anastasia yendiki),dsalat@mgh.harvard.edu(david h.h. salat) (Iman Aganj)
手稿于2020年7月26日收到;修订于2020年10月13日和2020年10月19日; 2020年10月22日接受。2020年11月16日出版日期;当前版本的日期,2020年11月24日。This work was supported in part by the Applications and Systems-driven Cen- ter for Energy-Efficient Integrated Nano Technologies (ASCENT), one of six Centers in the Joint University Microelectronics Program (JUMP), a Semiconductor Research Corporation (SRC) Program sponsored by DARPA, and in part by the Air Force Office of Scientific Research.本文最初在2020年VLSI技术的虚拟研讨会上发表。本文的评论由编辑M. Kobayashi安排。(通讯作者:Peide D.ye。)Yiming Qu和Junkang Li与Birck纳米技术中心,电气和计算机工程学院,普渡大学,西拉斐特的普渡大学,美国47907,以及电子工程与信息科学学院,Zhejiang University,Zhejiang University,Hangzhou 310027,中国。Mengwei Si,Xiao Lyu和Peide D. Ye在美国47907的Purdue University,Purdue University,Purdue University,Purdue University,美国47907的Birck Nanotech-Notech-Notech-Notech-Notech-Notech-Notech中心(电子邮件:yep@yep@purdue.edu)。本文中一个或多个数字的颜色版本可在https://doi.org/10.1109/ted.2020.3034564上找到。数字对象识别10.1109/ted.2020.3034564
对于此类高级应用,使用高精度的电导率测量单元,能够在广泛的电导率范围内进行测量并且对广泛的腐蚀性离子介质具有抵抗力是有益的。最常见的是,使用了两种类型的电导率传感器:基于电极的传感器和电感传感器。电极传感器适用于低电导率和中等电导率,电导率的精度在2×10-8至0.65 s cm -1的范围内±3%至5%。14,15在通用设备中,由于这些传感器的紧凑设计,尤其是针对更高的电导率,准确性降低了。此外,在反应性介质中,电极结垢可以改变细胞常数,并对测量精度产生负面影响。电感传导率传感器特别适用于苛刻的化学环境,因为只有惰性和耐热材料(例如PEEK和PTFE)与样品接触。但是,这些传感器缺乏电极型对应物的灵敏度,并且需要较大的样品体积。16后者在实验室应用中不利,例如,当空间有限或
Rick Tolin是Lubrizol Advanced
b' 对锂离子电池的技术需求快速增长,促使人们开发具有高能量密度、低成本和更高安全性的新型正极材料。高压尖晶石 LiNi 0.5 Mn 1.5 O 4 (LNMO) 是尚未商业化的最有前途的候选材料之一。这种材料的两个主要障碍是由于高工作电压导致的较差的电子电导率和全电池容量衰减快。通过系统地解决这些限制,我们成功开发出一种厚 LNMO 电极,面积容量负载高达 3 mAh \xe2\x8b\x85 cm 2 。优化的厚电极与纽扣电池和袋式电池级别的商用石墨阳极配对,在 300 次循环后,全电池容量保持率分别高达 72% 和 78%。我们将这种出色的循环稳定性归功于对电池组件和测试条件的精心优化,特别注重提高电子电导率和高压兼容性。这些结果表明,精确控制材料质量、电极结构和电解质优化很快就能支持基于厚 LNMO 阴极(> 4 mAh \xe2\x8b\x85 cm 2)的无钴电池系统的开发,这最终将满足下一代锂离子电池的需求,降低成本,提高安全性,并确保可持续性。'
摘要在这项研究中,通过用苯胺盐氧化聚合方法制备了聚苯胺(PANI)。p-硫烯磺酸(P TSA)充当赋予导电性能的掺杂剂。掺杂过程将PANI的颜色从蓝色Pani Emeraldine碱(EB)转变为绿色Pani Emeraldine Salt(ES)。通过热重分析(TGA)和差异扫描量热法(DSC)分析了掺杂的PANI的热特性。TGA结果说明了PANI-EB体重减轻的两个主要阶段,这是水分含量和聚合物降解的损失。pani-es显示了三个降解阶段,这些阶段是去除掺杂剂,水分含量和聚合物主链的分解。Pani-es开始在170至173°C的较高温度下降解。这个结果表明,与PANI-EB相比,Pani ES具有更高的热稳定性,而PANI-EB的温度范围为160至163°C的较低温度开始恶化。dsc分析表明,pani的PTSA中有0.9 wt。PTSA的热量表中描绘了一系列宽峰,这表明与PANI相比,与PANI相比,pani的峰值较高,而PANI则具有不同浓度的PTSA。此外,pani为0.9 wt。%的P TSA在125°C时表现出最高的热稳定性。准备好的PANI通过应用易于浸入技术来制造导电织物。将棉布浸入三种不同浓度(0.3、0.6和0.9 wt。%)的Pani-PSA溶液中。基于电阻抗光谱(EIS)分析的发现,可以得出结论,与PANI相比,PANI的PANI为0.9 wt。PTSA的PANI表现出更好的电导率(3.30 x 10 -3 s/m),而PANI的电导率(1.06 x 10 -7 s/m)。关键词:聚苯胺,导电聚合物,热重分析,差扫描量热法,电阻抗光谱
本文所包含的信息被认为是可靠的,但没有任何形式的陈述,担保或保证就其准确性,适用于特定申请或要获得的结果。这些信息通常基于实验室的小型设备,不一定表明最终产品性能或可重现性。提出的配方可能没有进行稳定性测试,仅应作为建议的起点。由于在处理这些材料时商业上使用的方法,条件和设备的变化,因此没有对产品适用于披露的申请的适用性。全尺度测试和最终产品性能是用户的责任。Lubrizol Advanced Materials,Inc。不承担任何责任,并且客户对除Lubrizol Advanced Materade,Inc。的直接控制外的任何用途或处理任何材料都承担所有风险和责任。卖方不对明示或暗示的担保,包括但不限于对特定目的的适销性和适合性的隐含保证。本文中没有任何包含在未经专利所有者许可的情况下练习任何专利发明的授权,也不应将其视为诱因。Lubrizol Advanced Materials,Inc。是Lubrizol Corporation的全资子公司。
银导电油墨因其高电导率和热导率等潜在优势而被应用于电子工业。然而,银需要经过固化过程以减少颗粒之间的孔隙率,并具有光滑的导电轨道以确保最大的导电性。因此,探讨了温度对电导率和微观结构的影响。在分析之前,通过丝网印刷在聚合物基板上印刷银导电浆料。接下来,使用四点探针仪进行电分析以测量电导率,然后进行微观结构和机械分析,分别观察银的结构行为和硬度随温度的变化。研究发现,银的电导率随温度升高而增加。此外,随着温度的升高,银的微观结构尺寸变大,相应地导致银的硬度降低。总之,温度在提高银的电导率方面起着重要作用。关键词:银导电油墨,温度,电导率。1.引言导电油墨可以是无机材料和有机材料[1]。无机材料是金属纳米粒子(例如铜、银和金)分散在基质溶液中,通常用于生产无源元件和晶体管电极 [1]。而有机材料或油墨包括有机材料(例如聚合物),可分为导体、半导体和电介质三类。高导电性聚合物油墨通常用于电池、电容器和电阻器,而半导体基聚合物油墨则用作有源层,例如有机发光二极管 (OLED)、传感器等 [1]。在选择合适的导电油墨之前,需要根据其属性考虑一些要求,例如电导率、对印刷基材的适用性、功函数、氧化稳定性、制造技术和成本。导电油墨必须通过加入导电填料(银、铜和金)表现出优异的导电性能。银纳米粒子是最有前途的导电油墨,也是印刷技术行业目前使用的铜油墨的替代品 [2-5]。在印刷技术中,使用银作为油墨具有优势,因为它可以在 473-573K 的低温范围内粘合和固化 [6-10]。Gao 等人的研究 [11] 报告称,银作为导电填料具有最高的电导率和热导率
目前,正在努力制造由半绝缘材料制成的光电导半导体开关并寻找其潜在应用。本文分析了文献中关于使用 PCSS 开关的参数和可能性,以及目前在电力和脉冲电力电子系统中使用的开关。介绍了基于 GaP 的开关原型模型的实验室测试结果,并将其与文献中的 PCSS 开关参数进行了比较。介绍并讨论了 IGBT 晶体管、晶闸管、光电晶闸管、火花隙和电源开关的工作原理、参数和应用。分析了用 PCSS 开关替换选定元件的可能性,同时考虑了比较器件的优缺点。还讨论了使用目前由磷化镓制成的 PCSS 开关的可能性。