摘要:初期的铁电特性已经成为一种有吸引力的功能材料,因为它们的潜力是为外来的铁电行为而设计的,因此具有巨大的希望,可以扩大铁电家族。然而,到目前为止,他们的人工设计的铁电性远远远远没有与经典的铁电抗衡。在这项研究中,我们通过制定超细纳米域工程策略来应对这一挑战。通过将这种方法应用于基于SRTIO 3的膜的代表性初期铁电膜,我们实现了前所未有的强大铁电性,不仅超过了先前的初期铁电磁记录,而且还可以与经典的铁电极相媲美。,薄膜的不分极化可达到17.0μccm-2,超高的居里温度为973 K.原子尺度研究阐明了这种强大的高密度超细性纳米域在跨越3-10个单位细胞中这种强大的高密度超细性纳米域中这种强大的铁电性的起源。将实验结果与理论评估相结合,我们揭示了潜在的机制,在这种机制中,有意稀释的外国FE元素可以很好地产生更深的Landau能量,并促进了极化的短期排序。我们开发的策略显着简化了非常规铁电的设计,为探索新的和上级铁电材料提供了多功能途径。
热电材料作为能够将电能和热能相互转化的材料,如何提高热电材料的热电转换效率是当前研究的热点问题。目前,Bi 2 Te 3 基热电材料在室温附近ZT值可以达到1.3~1.4,部分热电材料在高温下的ZT值可以达到2.0以上。但要想使热电材料实现更广泛的应用,必须寻找到室温下热电性能更高的材料。目前,提高热电材料的热电转换效率常用的方法有:
开发用于修复临界骨缺损的脚手架的发展在很大程度上依赖于建立神经血管化的网络,以适当地渗透神经和血管。尽管在使用注入各种代理的人造骨状脚手架方面取得了重大进步,但仍然存在挑战。天然骨组织由一个多孔骨基质组成,该骨基质被神经血管化的骨膜包围,具有独特的压电特性,对骨骼生长必不可少。从该组件中汲取灵感,我们开发了一种模仿骨膜骨骨架的脚手架支架,具有压电特性,用于再生临界骨缺损。该支架的骨膜样层具有双网络水凝胶,由螯合的藻酸盐,明胶甲基丙烯酸酯和烧结的whitlockite纳米颗粒组成,模仿天然骨膜的粘弹性和压电性能。骨状层由壳聚糖和生物活性羟基磷灰石的多孔结构组成。与常规的骨状支架不同,这种生物启发的双层支架显着增强了成骨,血管生成和神经发生,结合了低强度脉冲超声辅助压电刺激。这样的方案增强了体内神经血管化的骨再生。结果表明,双层支架可以作为在动态物理刺激下加快骨再生的有效自动电刺激器。
在这个全球化时代,社会的需求随着技术进步而继续增加。技术越复杂,对电力和能源存储的需求就越高。当今广泛使用的储能介质是锂电池。但是,由于锂电池的价格很高,因此克服锂电池高价的解决方案是用碳基材料(例如氧化石墨烯)代替锂电池电极。氧化石墨烯可以由生物量废物制成,其中之一是玉米棒垃圾。是使用修改后的鹰嘴豆法合成的,并与Fe 3 O 4纳米颗粒合成,该纳米颗粒由三种组成变化组成,即20%:80%; 30%:70%;和40%:60%。fe 3 O 4 /使用LCR计对氧化石墨烯纳米复合材料进行表征。使用LCR计的表征数据结果获得了每次比较Fe 3 O 4 /氧化石墨烯氧化物纳米复合材料的电阻率值,即1.65 x 105Ω.m,1.25 x 105Ω.m和5.85 x 104Ω.m.m.m.m.m.m.m.m.m.m.m.m.m.m.m.m.m.Fe 3 O 4/氧化石墨烯纳米复合材料的电导率值分别为6.09 x 10 -6 s/m,8.07 x 10 -5 s/m和1.72 x 10 -5 s/m。Fe 3 O 4 /氧化石墨烯纳米复合材料的电容值分别为1.96 x 10 -7 F,2.55 x 10 -7 F和4.30 x 10 -7 f。在20%的比例中发现了Fe 3 O 4 /石墨烯氧化物纳米复合材料的最大电阻率值:80%组成变化,Fe 3 O 4 /氧化石墨烯氧化物纳米复合材料的电导率和电容值的比例为40%:60%组成的比率。随着Fe 3 O 4组成的增加,电导率和电导值增加,但电阻率值降低。
在过去几年中,使用腔量子量子电动力学效应,即真空电磁场来修饰腔中的材料特性。但是,仍然存在稀缺的一般结果,这些结果为直观的理解和局限性提供了可以实现哪种效果的指南。我们为低能量物质激发之间的有效相互作用提供了这样的结果,或者通过它们相互耦合与腔电磁(EM)线场或通过耦合与夫妇与EMFIELD的介体模式相互耦合或间接相互作用。我们证明了诱导的相互作用本质上是纯粹的静电,因此由零频率评估的EM Green函数完全描述。我们的发现表明,使用一个或几个空腔模式减少模型可以轻松产生误导性结果。
摘要:最近,基于聚合物的复合材料在低温条件下的应用已成为一个热门话题,尤其是在航空航天领域。在低温温度下,聚合物变得更脆,温度引起的热应力的不利影响更为明显。在本文中,综述了热塑性和热塑性聚合物用于低温应用的研究开发。本综述考虑了有关的文献:(a)经过修饰的热固性聚合物的低温性能以及所报道的修饰方法的改进机制; (b)某些商业热塑性聚合物的低温应用潜力以及经过修饰的热塑性聚合物的低温性能; (c)最近将聚合物用于特殊的低温环境液氧的进步。本文概述了针对低温应用聚合物的研究开发。此外,已经提出了未来的研究指示,以促进其在航空航天中的实际应用。
抽象的天然纤维增强复合材料(NFRCS)患有吸水和低温稳定性,导致纤维降解和随后的材料衰竭。研究了内置的压电传感器,以监视组件的变形/应变。作为来自橄榄石的可再生资源生物炭颗粒的低成本材料,在亚麻层和用作模型系统的纱线束上。碳黑色样品作为宠物型变体用作参考材料。生物炭和碳黑色覆盖的纤维系统被层压在环氧树脂中,然后进行拉伸测试。在测试过程中同时记录了电阻。Biochar在纳米到高千分尺范围(d <200μm)的宽大分布在传感器性能方面表现出色,颗粒大小范围较小d <20μm。具有集成生物炭颗粒的NFRC样品的量规因子(GF)达到30 - 80,而碳黑色不能超过8。为了获得最大的GFS,亚麻纱/层的纱线计数应尽可能薄,但仍然可以渗透粘附的粒子网络。与碳黑色相比,相对较大的粒径被确定为促成高GF的促成因子。
纳米复合材料是非常重要的材料,因为它比其他填充量低的复合材料具有优越的特性。苯乙烯丁二烯橡胶(SBR)是一种非极性橡胶,充当绝缘体并且具有低电导率。石墨烯血小板纳米热量从0.1到1.25 PHR水平合并到SBR橡胶中,以改善电气性能。通过改变填充含量的苯乙烯丁二烯橡胶(GPN)的苯乙烯丁二烯橡胶的电和机械性能的比较研究。掺入石墨烯血小板纳米热量会增加苯乙烯丁二烯橡胶中的电导率。已经观察到,通过在较高频率约为100 kHz时增加纳米燃料的量,电导率逐渐增加。苯乙烯丁二烯橡胶的机械性能通过掺入石墨烯血小板纳米热的含量得到改善。还以100 kHz的恒定频率研究了施加的压力和温度对复合材料的体积电阻率和电导率的影响。SBR/GPN纳米复合材料的电性能会随着压力和温度的增加而增加,直至一定极限,然后变为恒定。
随着航空航天,通信和能源存储系统中高功率电子设备的快速发展,巨大的热量频率对电子设备安全构成了越来越多的威胁。与几个微厚度的薄膜相比,高质量的石墨烯厚纤维(GTF)超过数百微米厚度是一个有希望的候选者,可以解决由于较高的热量量,以解决热管理挑战。然而,传统的GTF通常具有较低的导热率和弱的机械性能,归因于板板比对和脆弱的界面粘附。在这里,提出了一种无缝的键合组件(SBA)策略,以使GTF超过数百微米,具有可靠的合并界面。对于厚度为≈250μm的GTF-SBA,平面内和平面导热率分别为925.75和7.03 w m-1 K-1,大约是传统粘合剂组装方法制备的GTF的GTF的两次和12次。此外,GTF-SBA即使在77 k循环到573 K的严酷温度冲击后,也表现出了显着的稳定性,从而确保了其在极端条件下长期服务的环境适应性。这些发现提供了对石墨烯大块材料界面设计的宝贵见解,并突出了高性能石墨烯材料在极端热管理需求中的潜在应用。
随着航空航天,通信和能源存储系统中高功率电子设备的快速发展,巨大的热量频率对电子设备安全构成了越来越多的威胁。与几个微厚度的薄膜相比,高质量的石墨烯厚纤维(GTF)超过数百微米厚度是一个有希望的候选者,可以解决由于较高的热量量,以解决热管理挑战。然而,传统的GTF通常具有较低的导热率和弱的机械性能,归因于板板比对和脆弱的界面粘附。在这里,提出了一种无缝的键合组件(SBA)策略,以使GTF超过数百微米,具有可靠的合并界面。对于厚度为≈250μm的GTF-SBA,平面内和平面导热率分别为925.75和7.03 w m-1 K-1,大约是传统粘合剂组装方法制备的GTF的GTF的两次和12次。此外,GTF-SBA即使在77 k循环到573 K的严酷温度冲击后,也表现出了显着的稳定性,从而确保了其在极端条件下长期服务的环境适应性。这些发现提供了对石墨烯大块材料界面设计的宝贵见解,并突出了高性能石墨烯材料在极端热管理需求中的潜在应用。
