本文提出了一种适用于宽频率范围的新型静电可调电容器。针对其应用,提出了完整的设计规则来设计 0.01 pF – 2.05 pF 范围内的可变电容器。根据所需的电容值,设计的电容器占用 0.03 mm 2 – 1.12 mm 2 的空间,与相关已发表的文献相比非常小。使用浮动技术来获得高品质因数。所提出的电容器的品质因数在 1.28G 至 2.78GHz 的频率范围内在 45 到 100 之间,并且可调电容器的可调谐范围为 374%。在提出完整的设计规则和相关方程后,所提出的电容器用于带有螺旋电感器的放大器电路中,并评估了所提出的电容器的性能并将其与其他电容器进行了比较。使用 COMSOL Multiphysics 进行模拟。
新的48V技术已在电动机系统中标准化,以减少电动汽车的排放(EV)。它取代了传统的12V系统,用于提供额外的高压电池以满足增加的功率要求。除了电动机和电池组动力总成外,48V系统还具有其他直接操作(例如供暖和空调应用)的优势。这项技术增加了功能能力,可用于较重的负载,例如启动时空调和催化转换器。因此,这刺激了适合48V配置的本地DC-DC转换器和被动组件(包括电容器和电感器)的进步。这样的发展可能导致该技术在完全电池电力系统中广泛采用,从而促进了电池组的400或800 V输出到48 V的转换,以在整个车辆中分发。
I.引言全球对可持续能源解决方案的推动力是在耗尽的化石燃料储量和环境问题的驱动下,促进了电力电子产品的进步[1]。关键在这些创新中是双向DC-DC转换器,该转换器最初是为电动机驱动器而设计的,以控制速度和制动[2]。今天,他们的应用跨越了关键部门,例如直流驱动器,微电网,可再生能源存储和混合动力汽车,对于管理电力流量和在高功率情况下稳定电压至关重要[3]。但是,这些转换器在高功率应用中面临一些挑战,例如由于系统流动较大,电感器的大小增加,因此转换器的尺寸增加。另外,由于开关现象,输入电流会产生波动,因此为了克服这些问题,引入了转换器中的相互交流拓扑。此拓扑涉及多个阶段,这些阶段彼此并联以共享功率载荷[1]。
在现代微波和毫米波通信系统的设计过程中,设计人员必须对器件(晶体管、电容器、电感器等)进行特性分析频率范围很广,从接近直流到远远超出设计的工作频率。器件特性分析过程会生成电路仿真中使用的模型,模型的准确性决定了仿真的准确性,从而决定了首次成功的机会。模型准确性的一个重要因素是器件特性分析远远超出电路的工作频率,在许多情况下,需要对远远超出 110 GHz 的频率进行特性分析。超宽带 VNA,例如具有 70 kHz 至 220 GHz 单次扫描功能的 VectorStar™ ME7838G,可提供业界领先的测量,并实现最佳器件特性分析,从而实现精确的模型和电路仿真。
新的 48V 技术已在电动机系统中标准化,以减少电动汽车 (EV) 的排放。它取代了传统的 12V 系统,提供额外的高电压电池来满足增加的功率需求。除了动力系统的电动机和电池组外,48V 系统还具有其他直接操作的优势,例如加热和空调应用。该技术提高了功率能力,可用于启动时更重的负载,例如空调和催化转化器。这进而推动了适合 48V 配置的本地 DC-DC 转换器和无源元件(包括电容器和电感器)的进步。这样的发展可能导致该技术在全电池电动系统中得到广泛采用,从而有助于将电池组的 400 或 800 V 输出转换为 48 V 以分配到整个车辆。
- 电子开关转换器的设计和实施 - 实现高电流(散热)、高电压(隔离、局部放电)、高 di/dt 和 dv/dt(电磁兼容性)的印刷电路板,同时存在“噪声”组件(功率器件、电感器和变压器)和电磁噪声敏感组件 - 用于电源转换器的模拟和数字控制系统的设计 - 微控制器、DSP 或逻辑电路(FPGA)和 PCB 的编程,实现与电源转换器的连接 • 熟悉安全法规,特别是有关电子实验室的法规(D.Lgs. 81/08) • 实验室用户的技术和组织协调技能,包括内部(教师、研究人员、博士生、学生)和外部,特别注意遵守安全法规 • 熟悉英语(B2 级),特别关注技术语言 • 团队合作,包括国际层面的团队合作 • 愿意出国旅行(主要是欧洲和北美)。
•为了基于SC2节点,我们使用自换连接器和150 nm的电感器设计测试电路,并进行了制造和测试,例如DC-SFQ和SFQ-DC转换器,平衡比较器,SFQ和QFP逻辑,Ac-Ac-ships exhips cubsister,Ac-Ac-ships expressers,Ac-Ac-ships Expisters等。,我们通过在最接近堆栈中JJ层的NB层上实现了150 nm线宽电感的单层通过在NB层上实现150 nm线宽电感的单层,从而证明了电路密度的增加约2倍。对于具有600-µA/µm 2自换的约瑟夫森连接的移位寄存器,我们达到的电路密度为1.3∙107 JJS/cm 2,因此超过了每1 cm 2芯片的10m JJS阈值,在大尺度超尺寸超大型电子系统中应用所需的集成量表所需的集成规模所需。
新的48V技术已在电动机系统中标准化,以减少电动汽车的排放(EV)。它取代了传统的12V系统,用于提供额外的高压电池以满足增加的功率要求。除了电动机和电池组动力总成外,48V系统还具有其他直接操作(例如供暖和空调应用)的优势。这项技术增加了功能能力,可用于较重的负载,例如启动时空调和催化转换器。因此,这刺激了适合48V配置的本地DC-DC转换器和被动组件(包括电容器和电感器)的进步。这样的发展可能导致该技术在完全电池电力系统中广泛采用,从而促进了电池组的400或800 V输出到48 V的转换,以在整个车辆中分发。
远征空战与武器的基础研究 I. 引言 本公告描述了一个名为“远征空战与武器的基础研究”的技术领域,该领域属于海军和海军陆战队科学技术长期广泛机构公告 N00014-24-S-B001,可在 https://www.nre.navy.mil/work-with-us/funding-opportunities/announcements 上找到。提案的提交、评估以及研究补助金和合同的发放将按照上述长期广泛机构公告中所述进行。本公告的目的是引起科学界的关注:(1) 三个待研究的主题领域,(2) 相关信息研讨会,以便对这些主题感兴趣的人进行对话,以及 (3) 提交白皮书和完整提案的计划时间表。II.主题描述 ONR 海军空战和武器 (Code 35) 部门通过促进海军航空平台、动能武器、定向能和电武器的技术发展来支持海军和美国海军陆战队的需求。本次 BAA 征集将在与远征军相关的三个 (3) 个主题领域开展创新基础研究,并为他们提供未来持久的技术优势。主题 1:为超宽带隙 (UWBG) 电力电子技术提供磁性材料背景:目前,没有任何商用现货 (COTS) 电感材料或空心芯能够充分满足未来海军电力和能源系统在功率处理、效率、体积效率和温升方面的需求。这个不可否认的结论不仅需要新材料,而且还需要一种新的超高频材料设计范式,以捕获 250 MHz 或更大的带宽。需要专注于开发用于电感器的新型磁性材料,着眼于将应用扩展到高频变压器,以提供高 SWAP+C2(尺寸、重量和功率加上成本和冷却)和可靠的超高频应用电感器。此外,截止频率和磁导率/磁化(电感饱和电流)呈反比关系,与尖晶石铁氧体和合金中观察到的众所周知的趋势一致(即 Snoek 关系)。然而,更宽的带宽(即更高的截止频率)是以较低的磁导率和磁化为代价的,这意味着更低的功率处理能力、更高的损耗因子和对 SWAP+C2 的妥协。然而,磁导率较高的样品具有较低的截止频率,从而抑制了高频功率谐波。温升
一般交流驱动器布置 每个交流驱动器都包括交流市电电源和负载之间的三个主要部分。如图 1 所示。转换隔离并将市电电压更改为转换部分的电平和配置。转换部分将转换后的市电电压转换为可调电压、可调频率的交流电压,以匹配所连接负载的速度和扭矩要求。利用部分由交流电机和机械设备(如齿轮和联轴器)组成。驱动器转换部分包括直流转换、能量存储和切换。驱动器的转换部分使用半导体组合将市电电压转换为直流电压和电流。此直流电存储在电感器或电容器中,然后传递到切换部分。切换部分将存储的直流电压或电流连接到交流电机的连续相中。频率、电压和电流经过调节以满足负载的需求。