14. 因此,尽管无功能量交换(仅当按照 MSLDC 的指示进行)需要由 MSLDC 向发电站进行补偿/征收,但还设想为所有 TSU 建立一种激励/抑制机制,以规范它们向电网提取/注入无功能量。因此,理想情况下,所有 TSU(即所有州内发电站,包括自备电厂、可再生能源发电机、配电许可证持有者和连接到 InSTS 的消费者)都应纳入无功能量核算框架,但是,如果电网本身无功功率补偿不足或电压相关(过压或欠压)问题,而没有在电网层面部署足够的电抗器进行无功补偿,则不宜对这些 TSU 进行处罚。
ABB 是 HVDC Classic® 领域的先驱,已有 60 多年的历史,于 1997 年推出了 HVDC Light 技术。目前,HVDC Light 在可再生能源领域发挥着重要作用,可提供高达 3000 MW 的传输容量。ABB 始终面向未来,在 HVDC Light 换流站项目开发的最早阶段就应用了数值方法的进步来解决 EMC 设计问题。ABB 的智能仿真模型或数字孪生模型可重现整个换流站,包括阀门、阀厅、换流电抗器、穿墙套管、换流变压器、高频 (HF) 滤波器以及交流和直流场内的全部布线。数字电磁孪生模型允许在设计、调试和运行阶段可靠地执行各种 EMC 相关调查:• 半导体开关对 HF 干扰特性的影响• 控制算法和系统尺寸(即电池电压和电流额定值)• HF 滤波器优化和定位• 组件的设计变体、组件放置、母线和电缆布局• 建筑结构的屏蔽效果
PTI Transformers LP,加拿大马尼托巴省温尼伯 ORCID:1. 0000-0002-1216-6513 doi:10.15199/48.2024.11.39 可再生能源收集器变压器摘要。太阳能发电站或风电场中的可再生能源集电变压器 (RCT) 将集电系统的电压转换为传输级电压。由于主要目标是提高电压,RCT 在此功能上与发电机升压 (GSU) 变压器相似,但有一些设计特点和操作特性使这些装置独一无二,例如典型的绕组配置星形-星形-埋置三角形,低压绕组通常通过中性点接地电抗器接地。设计必须考虑低压电流和电压中的谐波。抽象的。光伏站或风电场中的可再生能源站(RES站)的主变压器将来自主系统的电压转换为输电级电压。由于主要目的是提高电压,RCT 在这方面的功能与 GSU 变压器相似,但有一些设计特点和操作特性使这些装置独一无二,例如典型的三角形-星形绕组配置,低压绕组通常通过中性接地电感器接地。设计必须考虑低压电流和电压中谐波的存在。 (可再生能源发电站主变压器) 关键词:电力变压器、可再生能源发电站、过电压、谐波。可再生能源集电变压器 (RCT) 是一种专用电力变压器,它在太阳能发电站或风力发电场中,将电站集电系统的电压(通常为 34.5 kV)转换为传输电压水平,通常范围从 138 到 345 kV 或 500 kV。可再生能源站中 RCT 的位置如图 1 所示。虽然直接连接到逆变器的小功率变压器在论文和标准 [1, 2] 中有很好的描述,但集电变压器在已发表的参考文献或标准中并没有很好的描述。因此,本文的目标就是填补这一空白。图 1。集电变压器放置在集电母线和传输线之间;来自参考文献。 [1] 大多数可再生能源可能会出于不同的原因使用多个集电变压器,例如为了限制其物理尺寸(特别是为了运输或由于场地限制),或者利用电站设计理念的特点,例如分配负载或在故障期间在电站各部分之间转移负载,或紧急加载。由于 RCT 的主要目的是提高电压,因此该变压器的功能与发电机升压 (GSU) 变压器类似。然而,RCT 与 GSU 有许多区别,包括:(i)典型的绕组配置为星形-星形-埋地三角形,而 GSU 绕组采用星形-三角形连接,(ii)RCT 的低压绕组通常通过中性点接地电抗器 (NGR) 接地,而高压绕组
电力电子标准 AEG PS Tours 设备是根据下列 IEC 标准的适用部分设计和制造的。IEC/EN60051 电气测量仪器。IEC/EN60068 环境测试。IEC/EN60073 指示灯和按钮的颜色。IEC/EN60076 电力变压器。IEC/EN60529 低压开关设备和控制设备外壳的防护等级 IEC/EN60146 半导体转换器。IEC/60157 低压配电设备。IEC 60158 低压控制设备。IEC/EN60044-1 电流互感器。IEC 60186 电压互感器。IEC/EN60204 工业机械电气设备。IEC/EN60228 绝缘电缆导体。IEC/EN60255 电气继电器。IEC/EN60269 低压保险丝。 IEC/EN60289 电抗器。IEC/EN60384 电子设备用固定电容器。IEC/EN60439 低压开关设备和控制设备组件。IEC/EN60445 设备端子识别和统一端子标记系统的一般规则。IEC/EN60446 通过颜色识别绝缘导体和裸导体。IEC 60478 稳定电源直流输出。IEC/EN60598 灯。IEC/EN60417 设备用图形符号。IEC/EN60617 图表用图形符号。IEC 60750 (1983) 由 IEC 61346 (1996) 取代。IEC 61346 工业系统、装置和设备及工业产品 - 结构原则和参考名称第 1 部分:基本规则;第 2 部分:物体分类和类别代码 EN 50178 电力装置用电子设备。EN 55011 工业、科学和医疗射频设备的无线电干扰特性的限值和测量方法。EN50272-2 二次电池和电池装置的安全要求。EN 60947 低压开关设备和控制设备(断路器、开关、接触器)。NF C58-311 蓄电池充电器类型测试程序。
缩略词 扩展 AAAC 全铝合金导体 ABT 基于可用性的费率 ACSR 铝导体 钢筋 AIS 空气绝缘变电站 ATC 可用传输能力 BESS 电池储能系统 CAGR 复合年增长率 CCAI 印度煤炭消费者协会 CEA 中央电力局 CERC 中央电力监管委员会 CICA 复合绝缘横担 ckm 电路公里 [线路长度(公里)x 电路数] CSD 控制开关设备 CSIRT 计算机安全事件响应小组 CTU 中央输电公用事业 DISCOM 配电公司 DLR 动态线路额定值 EHV 超高压 EMT 电磁瞬态 EPS 电力调查 FACTS 柔性交流输电系统 GDP 国内生产总值 GEC 绿色能源走廊 GIL 气体绝缘线路 GIS 气体绝缘变电站 GNA 通用网络接入 GW 千兆瓦(1 GW =1000 MW) HEP 水力发电厂/项目 HTLS 高温低垂 HVAC 高压交流电 HVDC 高压直流电 ICT 互连变压器 IEEE 电气电子工程师协会 IGBT 绝缘栅双极晶体管 Intra-STS 州内输电系统 IPP 独立电力生产商 ISGS 州际发电站 ISTS 州际输电系统 IWPA 印度风能协会 kV 千伏 LiDAR 光检测和测距 LILO 线路输入线路输出 MNRE 新再生能源部 MoEF&CC 环境、森林和气候变化部 MoP 电力部 MPLS 多协议标签交换 MSC 机械开关电容器 MSR 机械开关电抗器 MU 百万单位(1 MU =10 6 kWh) MVA 兆伏安(1 MVA = 10 6 VA)
缩略词 扩展 AAAC 全铝合金导体 ABT 基于可用性的费率 ACSR 铝导体 钢筋 AIS 空气绝缘变电站 ATC 可用传输能力 BESS 电池储能系统 CAGR 复合年增长率 CCAI 印度煤炭消费者协会 CEA 中央电力局 CERC 中央电力监管委员会 CICA 复合绝缘横担 ckm 电路公里 [线路长度(公里)x 电路数] CSD 控制开关设备 CSIRT 计算机安全事件响应小组 CTU 中央输电公用事业 DISCOM 配电公司 DLR 动态线路额定值 EHV 超高压 EMT 电磁瞬态 EPS 电力勘测 FACTS 柔性交流输电系统 GDP 国内生产总值 GEC 绿色能源走廊 GIL 气体绝缘线路 GIS 气体绝缘变电站 GNA 通用网络接入 GW 千兆瓦(1 GW =1000 MW) HEP 水力发电厂/项目 HTLS 高温低垂 HVAC 高压交流电 HVDC 高压直流电 ICT 互连变压器 IEEE 电气电子工程师协会 IGBT 绝缘栅双极晶体管 Intra-STS 州内输电系统 IPP 独立电力生产商 ISGS 州际发电站 ISTS 州际输电系统 IWPA 印度风能协会 kV 千伏 LiDAR 光检测和测距 LILO 线路输入线路输出 MNRE 新再生能源部 MoEF&CC 环境、森林和气候变化部 MoP 电力部 MPLS 多协议标签交换 MSC 机械开关电容器 MSR 机械开关电抗器 MU 百万单位(1 MU =10 6 kWh) MVA 兆伏安(1 MVA = 10 6 VA)
• 确保设施内使用的变频驱动器 (VFD) 不会导致过度的设施谐波失真是一种良好的工程实践。有关更多信息,请参阅 IEEE 519。• 如果 VFD 和受控电机之间的电缆长度超过 50 英尺,则可能需要在前几个绕组上增加电机绕组绝缘或在逆变器输出端安装 LC 滤波器。• 只要制造商的要求符合适用的电气规范,VFD 就应按照制造商的噪声接地要求接地。• 设施所有者可能需要考虑:由制造商代表启动 VFD、过流跳闸保护、临界频率锁定。• 仅对以下 VFD 安装类型下列出的 HVAC 应用安装 2 马力及以上的变频驱动器将提供规定折扣。其他 VFD 应用可能符合 Central Hudson 定制计划的资格。• 以下 HVAC VFD 应用没有资格使用此应用:o 带有入口导叶的前向曲线风扇;o 变距叶片轴流风扇; o 更换发生故障的 VFD;o 仅用于平衡恒定流量的 VFD;o 控制现有的 2 速冷却塔风扇;o 风扇或泵的 2 速控制;减轻安装过大电机的压力。• 对于冷冻水和加热泵安装,至少 75% 的泵容量必须由 2 通阀控制。• VFD 必须由自动信号控制,以响应变化的空气或水流。受控电机每年必须至少运行 2,000 小时。 • 必须随此申请提交已发布的制造商信息,以证明符合以下每个标准:o 在满载和无惯性的情况下,VFD 控制上的最短 15 毫秒穿越时间o 自动重启o 飞行重启(启动旋转电机,速度搜索)o 欠压跳闸 85% 或更低o 根据驱动马力,最低 3% 在线电抗器或等效装置(扼流圈、隔离变压器)o 满载和全速下最低 95% 驱动效率o 0.95 最小位移功率因数• 零件保修至少一年。
图 3- 20: LVRT 期间无功功率响应不理想的典型电厂案例研究 ...................................................................................................................................... 78 图 3- 21: RE 电厂外部 765 kV Bhadla-Bikaner 电路 1 的相间故障 ............................................................................................. 79 图 3- 22:通过 400 kV Bhadla 端的 400 kV Bhadla-Bhadla-2 电路 1 的 PMU 观察到的 765 kV Bhadla-Bikaner 电路 1 的 YB 故障 ................................................................................................................ 80 图 3- 23: 事件期间的 Bassi PMU 频率 ............................................................................................................................. 80 图 3- 24: 通过 SCADA 观察到的 NR 发电损失为 7120 MW ............................................................................................................. 81 图 3- 25: LVRT 期间有功功率响应令人满意的典型电厂案例研究 ............................................................................................. 82 图3- 26 典型电厂在 LVRT 期间无功响应满意的案例分析 ...................................................................................................................... 83 图 3- 27 典型电厂在 LVRT 期间有功响应延迟的案例分析 ...................................................................................................... 84 图 3- 28 典型电厂在 LVRT 期间有功响应不满意的案例分析 ............................................................................................. 84 图 3- 29 典型电厂在 LVRT 期间无功响应不满意的案例分析 ............................................................................................. 85 图 3- 30 典型电厂在 HVRT 期间有功响应满意的案例分析 ............................................................................................. 85 图 3- 31 典型电厂在 HVRT 期间无功响应满意的案例分析 ............................................................................................. 86 图 3- 32 典型电厂在 HVRT 期间有功响应不满意的案例分析 ............................................................................................. 86 图 3- 33 典型电厂在 HVRT 期间无功响应不满意的案例分析 ............................................................................................. 87 图3- 34: 典型电厂响应不良的案例研究 ...................................................................................................... 88 图 3- 35: 765kV Bhadla2-Ajmer 电路 2 发生相接地故障,随后 RE 电厂外部的 A/R 失败 ................................................................................................................................ 89 图 3- 36: 765kV Ajmer-Bhadla2 ckt-2 发生相接地故障,随后 A/R 失败 ............................................................................................................................. 90 图 3- 37 事件期间 RE 发电量的减少(SCADA 数据) ............................................................................................................. 90 图 3- 38: 典型电厂在 LVRT 期间具有令人满意的有功功率响应的案例研究 ............................................................................................. 92 图 3- 39: 典型电厂在 LVRT 期间具有令人满意的有功功率响应的案例研究 ............................................................................................. 92 图 3- 40: 典型电厂在 LVRT 期间有功功率响应延迟的案例研究 ............................................................................................................. 3-41:LVRT 期间有功功率响应不理想的典型电厂案例研究...................................................... 94 图 3-42 2 月 9 日事件中的 NR 太阳能发电模式......................................................................................... 95 图 3- 43 2 月 9 日事件中的 NR 太阳能发电模式 .............................................................................. 95 图 3- 44:在 Bhadla 端打开 765 kV Bhadla-Bikaner 电路 1 线路电抗器 ............................................................................. 96 图 3- 45:打开线路电抗器后 765 kV Bhadla (PG) 的电压(根据 765 kV Fathegarh-2 Bhadla (PG) 线路的 PMU 记录) ................................................................................................................ 96 图 3- 46:事件期间的 Bassi PMU 频率 ............................................................................................................. 97 图 3- 47:通过 PMU 观察到 765 kV Bhadla - Fatehgarh 2 在过电压阶段 I 上跳闸 98 图 3- 48:通过 DR 记录观察到 765 kV Bhadla-Fatehgarh-II 电路 1 跳闸 ...... 99 图 3-49:HVRT 期间有功功率响应令人满意的典型电厂案例研究 ........................................ 100 图 3-50:HVRT 期间无功功率响应令人满意的典型电厂案例研究 ........................................ 100 图 3-51:HVRT 期间有功功率响应不令人满意的典型电厂案例研究 101 图 3-52:HVRT 期间无功功率响应不令人满意的典型电厂案例研究 ................................................................................................................................................ 102 图 3-53:典型 RE 电厂的逆变器数据表 ............................................................................................................................. 104 图 3-54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110........................................................................... 96 图 3-46:事件期间的 Bassi PMU 频率 .............................................................................................. 97 图 3-47:通过 PMU 观察到 765 kV Bhadla - Fatehgarh 2 因过电压阶段 I 跳闸 98 图 3-48:通过 DR 记录观察到 765 kV Bhadla-Fatehgarh-II 电路 1 跳闸 ............................................................................................. 99 图 3-49:HVRT 期间有功功率响应令人满意的典型电厂案例研究 ............................................................................. 100 图 3-50:HVRT 期间无功功率响应令人满意的典型电厂案例研究 ............................................................................. 100 图 3-51:HVRT 期间有功功率响应不令人满意的典型电厂案例研究 101 图 3-52:HVRT 期间无功功率响应不令人满意的典型电厂案例研究........................................................................................................................................................... 102 图 3- 53:典型 RE 电厂的逆变器数据表 .......................................................................................... 104 图 3- 54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110........................................................................... 96 图 3-46:事件期间的 Bassi PMU 频率 .............................................................................................. 97 图 3-47:通过 PMU 观察到 765 kV Bhadla - Fatehgarh 2 因过电压阶段 I 跳闸 98 图 3-48:通过 DR 记录观察到 765 kV Bhadla-Fatehgarh-II 电路 1 跳闸 ............................................................................................. 99 图 3-49:HVRT 期间有功功率响应令人满意的典型电厂案例研究 ............................................................................. 100 图 3-50:HVRT 期间无功功率响应令人满意的典型电厂案例研究 ............................................................................. 100 图 3-51:HVRT 期间有功功率响应不令人满意的典型电厂案例研究 101 图 3-52:HVRT 期间无功功率响应不令人满意的典型电厂案例研究........................................................................................................................................................... 102 图 3- 53:典型 RE 电厂的逆变器数据表 .......................................................................................... 104 图 3- 54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110........................................................................................................... 102 图 3- 53:典型 RE 电厂的逆变器数据表 ...................................................................................... 104 图 3- 54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110........................................................................................................... 102 图 3- 53:典型 RE 电厂的逆变器数据表 ...................................................................................... 104 图 3- 54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110