摘要:氢能作为一种能源载体和储能系统受到了全球的广泛关注。氢能载体引入了电转氢 (P2H) 和电转氢转电 (P2H2P) 设施,将多余的能源储存在可再生能源储存系统中,具有大规模储存容量、可运输性和多种用途等特点。这项工作研究了混合太阳能光伏 (PV)/氢/燃料电池供电的蜂窝基站在发展绿色移动通信以减少环境恶化和缓解化石燃料危机方面的技术经济可行性。使用电力可再生能源混合优化模型 (HOMER) 优化工具进行广泛的模拟,以评估不同相关系统参数下的最佳规模、能源产量、总生产成本、单位能源生产成本和碳足迹排放。此外,借助基于 MATLAB 的蒙特卡罗模拟,严格评估了无线网络的吞吐量和能源效率性能,其中考虑了多径衰落、系统带宽、传输功率和小区间干扰 (ICI)。结果表明,对于电信行业来说,由推荐的混合供电系统驱动的宏蜂窝基站将是一种更稳定、更可靠的绿色解决方案。混合供电系统拥有约 17% 的剩余电力和 48.1 小时的备用容量,通过保持更好的服务质量 (QoS) 来提高系统可靠性。最后,将建议系统的结果与其他供电方案和之前发表的研究工作进行了比较,以证明所提系统的有效性。
太阳能/能源存储进一步在各种渗透水平上进行了建模,包括:• 100% 太阳能/能源存储:如今,全可再生能源将需要大约 280 英亩的土地。鉴于这种土地使用的复杂性,此选项没有时间估计。此选项还需要一个非常大的能源存储系统,并且与其他选项一样,需要相当于 100% 负载的备用化石燃料发电才能满足 SCE 冗余要求。为了满足 SCAQMD 的最后期限,可以首先允许和建造化石燃料发电系统。• 60% 太阳能/能源存储:由于与 100% 可再生能源选项有类似的限制,60% 太阳能/能源存储也是一个昂贵的选项。而且,与其他选项一样,为了满足 SCAQMD 的最后期限,可以首先允许和建造化石燃料发电系统。• 5% 太阳能/能源存储:分析中使用的模型将此方案确定为 Catalina 发电成本最低的选项。它还具有
传统上,电网运营商通过根据客户电力消耗的每日、每小时和每分钟变化来增加或减少发电量,从而保持这种平衡。然而,大量可再生能源颠覆了传统的电网管理,因为大多数可再生能源发电(如风能和太阳能)无法像化石燃料发电机那样进行控制。相反,风能和太阳能发电依赖于天气条件。虽然可再生能源发电确实遵循某种可预测的天气模式,但这些模式并不一定与能源消耗相一致,这对必须使需求与供应保持一致的公用事业和电网运营商提出了挑战。此外,可再生能源发电机并非随时可用,如果不使用昂贵的固定电池,就无法随着需求的上升和下降而增加或减少发电量。
摘要 当今世界正朝着更加可持续的未来转型。全球范围内都在推动和实施减少温室气体 (GHG) 排放的行动,包括转向电动汽车 (EV) 和太阳能光伏 (PV) 等可再生能源技术。这导致近十年来全球电动汽车和光伏的应用大幅增加。然而,电动汽车和光伏在建筑物和配电系统中的大规模集成带来了新的挑战,例如峰值负荷增加、功率不匹配、组件过载和电压违规等。改善电动汽车、光伏和其他建筑电力负荷之间的协同作用可以克服这些挑战。电动汽车的协调充电或所谓的电动汽车智能充电被认为是改善协同作用的一种有前途的解决方案。本论文研究了在应用电动汽车智能充电方案的情况下住宅电动汽车充电和光伏发电之间的协同作用。本论文的研究是在单个建筑、社区和配电网层面进行的。为降低住宅建筑净负荷(负荷 - 发电)变化,我们开发并模拟了智能充电模型。降低净负荷变化意味着既要降低峰值负荷,又要增加本地发电的自耗,这也将提高电网性能。我们还评估了 PV-EV 组合电网承载能力。结果表明,智能充电方案可以提高 PV 自耗,并降低配备 EV 和 PV 系统的建筑物的峰值负荷。PV 自耗可提高至 8.7%,峰值负荷可降低至 50%。自耗改善有限,原因是中午太阳能达到峰值时家中 EV 可用性较低。结果还表明,EV 智能充电可以提高电网性能,例如减少电网损耗和电压违规发生。智能充电方案显著提高了 EV 的电网承载能力,但对 PV 的电网承载能力略有提高。还可以得出结论,在住宅配电网中,光伏和电动汽车承载能力之间存在轻微的正相关性。关键词:电动汽车、智能充电、光伏、住宅建筑、用电量、自耗、配电网、承载能力
