光频率梳(OFC)参与了大量应用,例如计量,电信或光谱。在过去的几年中,已经探索了不同的技术。使用电气调制器(EOM),可以生成完全可调的OFC,该OFC通过应用的电气射频(RF)信号的频率设置了光学重复速率。为了实现芯片OFC发电机,Silicon Photonics是一项非常合适的技术,受益于大规模制造设施,并且有可能将电子设备与EOM整合在一起。但是,重复速率低于10 GHz的OFC可能具有挑战性,因为此类间距小于基于光栅的光谱分析仪的典型分辨率。为了克服这个问题,使用了基于异差检测技术的两种替代解决方案来对电气RF域上的OFC进行成像。第一种技术包括在调制器上同时应用两个频率,并观察结果的两个梳子之间的跳动。另一种方法是观察OFC和输入激光器之间的跳动,一旦该输入激光器的频率通过Acousto-Oc-Oc-Octic调制器从OFC的中心移动。基于两种测量技术,已观察到包含超过10条线的OFC,重复速率从100 MHz到15 GHz。它们是使用基于4毫米的硅耗尽耗尽的手动马赫 - Zehnder调制器(MZM)生成的,其波长为1550 nm。
软体机器人领域发展迅速,其目标是创造出机械柔顺性更强、功能更全、与人类交互更安全的机器人 [1]。为了实现这一目标,研究人员开发出了与传统机器人部件类似的柔性部件,用于传感 [2]、[3]、驱动 [4] 和计算 [5]。一部分软体机器人利用电磁力实现驱动 [6]–[8]。许多研究人员将磁性粒子嵌入有机硅弹性体中,制成可通过外部磁场 [9]–[12] 或局部磁场 [13]、[14] 驱动的软磁复合材料。Kohls 等人设计了一种带有液态金属线圈和软磁复合材料的软电磁铁 [15],然后将这项工作扩展为生产全软电动机 [16]。Li 等人引入了磁性油灰作为软体机器人的可重新编程、自修复建筑材料 [17]。为了替代耗电的电磁铁,机器人专家使用了电永磁体 [18]。电永磁体由两个磁化强度相同但矫顽力不同的永磁体组成 [19]。导电线圈缠绕在磁体周围,使得短暂的电流脉冲可以产生足够强的磁场来反转低矫顽力磁体的磁化,但不足以影响高矫顽力磁体。因此,通过选择性地反转低矫顽力磁体的极性,可以打开(非零净磁化)或关闭(中性净磁化)。与持续吸取电流的电磁铁相比,电永磁体仅在切换状态时短暂消耗能量;永磁体即使在开启状态下也不会消耗电能 [20]。
先前的实验提供了分别在二维材料中滑动铁电性和光激发层间剪切位移的证据。在这里,我们发现通过激光照明,在H -BN双层中令人惊讶的0.5 ps中可以实现垂直铁电的完全逆转。综合分析表明,铁电偏振转换源自激光诱导的层间滑动,这是由多个声子的选择性激发触发的。从上层n原子的P z轨道到下层B原子的P z轨道的层间电子激发产生所需的方向性层间力,激活了平面内光学TOTO TOTO TOS TOTO to-1和LO-1声音声模式。由TO-1和LO-1模式的耦合驱动的原子运动与铁电软模式相干,从而调节了动态势能表面并导致超快铁电偏振反转。我们的工作为滑动铁电的超快偏振转换提供了一种新颖的微观见解。
放眼全球碳中和趋势,三菱重工 (MHI) 的主打产品 GTCC 发电厂和蒸汽发电厂也迫切需要实现碳中和。在这样的环境下,高砂氢能园区正在我们开发和制造氢气涡轮机的高砂机械厂建设,这是世界上第一个从氢气生产到发电技术的综合验证设施。本报告介绍了其建设现状和即将介绍的氢气生产技术。此外,高砂氢能园区计划陆续扩建相关设施,目标是到 2025 年实现 30% 混燃大型燃气轮机产品和 100% 氢燃中小型燃气轮机产品的商业化。
与贷款计划办公室合作部署示例,并非详尽无遗。过去十年,有超过 190 家公司、109 所大学、16 个国家实验室参与;CRADA 是合作研究与开发协议
•可预测的,连续和创造性地解决另一个主要的环境问题•小尺寸分布式系统改善废物物流并提供清晰的废物转换为能源。•更清洁的焚化范围更清洁,解决垃圾填埋场转移授权
在地质构造中地下储存氢气可能是一种廉价且环保的中长期储存方式。氢气可以储存在地下的不同层中,例如含水层、多孔岩石和盐洞。22 需要指出的是,盐洞并不是自然存在的。相反,它们是地下盐层中的人工空腔,是在溶液开采过程中通过注水控制岩盐溶解而形成的。23 虽然地下氢储存类似于天然气储存,并且已在美国和英国的盐洞中得到证实,但地质结构的选择、工艺危害和经济性、法律和社会影响等挑战可能会阻碍其商业应用。Tarkowski 和 Uliasz-Misiak 之前的研究中已经充分记录了这些挑战。24 在另一项研究中,同一作者回顾了阻碍大规模利用地下氢储存的障碍。 25 二氧化碳排放许可成本增加和“绿色氢”成本下降等因素是大规模实施地下氢储存的关键考虑因素。天然氢已在世界各地发现,包括阿曼、新西兰、俄罗斯、菲律宾、日本、中国以及意大利和法国西阿尔卑斯山 10,26 – 28