警告:必须对照明器进行接地。如果拆除盖子,则LED板的电击风险。灯具外部的安装 /操作预期的示波器无效保修。仅适用于EN55015范围内的国内 /轻型工业 /工业应用。测试符合BSEN 60598:一般要求和测试的规范。必须根据所有相关立法的适当合格的人安装。环境工作温度为0°C至25°C。如果超过最大工作温度,则灯具将自动调光 /关闭。终端块的额定值为16a。光源是不可更换的。带有紧急包装的照明器:当电池连接时,电池输出端子隔离时,电池输出端子可能会有效。维修前隔离电源和电池。紧急照明需要与切换供应相同阶段进行无关的实时连接。当不交往的供应连接状态指示器时,指示器会亮起绿色,当未交换的供应被断开指示器熄灭时,灯具在紧急模式下运行。进行全排放测试之前需要24小时充电期。所提供的紧急测试表应用于记录所有紧急测试。未达到3小时持续时间时应更换电池。永久实时的过度切换可能导致过早电池故障。电池电解液可能有害于眼睛 /开放的伤口,如果电解质触摸皮肤 /眼睛用水冲洗,请不要刺穿。不要焚化电池。
召回补救措施的吸收。JLR还监视了部署诊断软件的情况,该软件已检测到可能导致热超载的故障,并引入了针对检测到的电池故障的保护。到2024年,报告了少量的召回火灾事件,并调查了开始的问题。在2024年的过程中,JLR与NHTSA保持公开对话,讨论问题并提供有关调查的见解。在2024年7月,在JLR和NHTSA内部进一步审查了改进的诊断软件的能力,并更好地理解了限制。在Jaguar Land Rover的产品安全与合规委员会(PSCC)上讨论了此事,人们认为,美国2019年车辆和改进的诊断软件提供的保护水平可能存在潜在的问题。2024年8月与NHTSA进行了进一步的讨论,导致此事发展为捷豹路虎召回委员会(RDC),在2024年8月19日,该委员会于2024年8月19日被接受,而2019年的车辆并不是H484 H484安全召回的一部分,需要进一步的召回需要进一步减轻热量过多。由于担心,没有发生事故或伤害。JLR知道诊断软件安装后的车辆热超载状况的少量报告。美国已经发生了三场大火,与2019年汽车的软件更新有关。2024年1月10日,2024年7月4日和2024年7月5日。
电池故障分析和故障类型表征 Sean Berg 2021 年 10 月 8 日 本文介绍了锂离子电池的类型、故障类型以及用于调查起源和原因以识别故障机制的取证方法和技术。这是六部分系列文章的第一篇。要阅读本系列的其他文章,请单击此处。在过去 10 年中,可再生和可持续能源在整体电力生产和使用中的份额稳步增长,这主要是由于人们对气候变化以及石油价格不确定性和资源可用性的担忧。其中一些能源类型的间歇性问题已通过使用电池储能系统 (BESS) 得到很大程度的抵消,但并未完全解决。具体来说,锂离子 (Li-ion) 电池是 BESS 中最常用的电池类型,具有许多优势,包括尺寸更小、功率密度和能量密度等等。过去 10 年,锂离子电池每千瓦时的价格也大幅下降,这有助于降低这些可再生能源的能源成本,而持续的技术进步也提高了锂离子电池的性能。这些电池是一种多功能且高度可扩展的储能介质,可以采用多种形状和化学成分,使其可用于各种应用。然而,与任何其他技术一样,锂离子电池也会出现故障。了解电池故障和故障机制以及它们是如何导致或触发的非常重要。本文讨论了常见的锂离子电池故障类型,重点关注热失控,这是一种特别危险和危险的故障模式。本文还将讨论可用于表征电池故障的取证方法和技术。电池单元可能以多种方式发生故障,包括滥用操作、物理损坏或单元设计、材料或制造缺陷等。锂离子电池在充电/放电循环中会随着时间的推移而劣化,导致电池保持电量的能力下降。对于锂离子电池,当电池容量低于其标称容量的某个百分比(即通常为 80%,但可能低至 60%)时,电池将无法工作。以过高的 C 速率(即充电和放电期间由电池提供或流向电池的电流的量度)对电池进行充电和放电,例如,额定容量为 1,000 mAh 的电池以 1C 放电时可提供 1 安培电流 1 小时,这会缩短电池寿命并可能导致其他故障机制。撞击或跌落造成的物理损坏可能导致电池内部损坏。电解质蒸汽产生和从果冻卷中泄漏可能导致膨胀。密封不当或易受密封性损坏的电池可能导致电解质泄漏,以及潜在的内部暴露于外部氧气。如果电池有任何电量,这可能会导致爆炸,因为锂碳阳极对大气具有高度反应性。这些条件的某些组合,包括滥用操作条件,可能会导致热失控故障。本文重点介绍与热失控故障相关的原因。热失控是一种危险的故障类型,可能导致爆炸和火灾。在更大规模的锂离子电池储能系统中,这种故障可能是连锁的和灾难性的,因为热失控是由热量驱动的。一个以这种方式发生故障的电池会迅速导致由此产生的火灾的热量蔓延到其他周围的电池并引发相同的故障。结果不仅会对财产构成严重威胁,而且还会对
•充电前请始终放松所有电缆。•不要过度充电电池。充电过程完成后,将电池从充电器中卸下。•仅使用随附或更换零X充电器和电池。•您必须在安全区域内的锂聚合物电池充电远离易燃材料的电池。•仅在成人监督下收取电池。不要将充电电池无人看管。请注意充电过程,以便您可以立即对可能发生的任何问题做出反应。•不要在高于40°C或低于0°C的温度下为电池充电。•充电时请勿覆盖电池。不要将电池留在阳光直射的地方。•每次飞行和 /或撞车后,请检查电池是否有任何损坏或肿胀。•如果电池损坏,泄漏,发出声音,以任何方式刺破或畸形,请勿尝试使用。请立即以正确的方式安全地处理电池。•请勿弯曲,穿刺,压碎或刮擦无人机的电池。不要在口袋中,在您或极端温度下存放电池。•飞行/放电电池后,您必须使其冷却至环境/室温,然后再充电。•如果在充电或放电过程中的任何时间,电池开始气体或膨胀,请立即停止充电或排放。快速安全地断开电池,然后将其放在安全的区域中,远离易燃材料,以观察它至少15分钟。继续充电或排放已经开始气球或膨胀的电池会导致火灾。即使在少量的情况下,也必须完全从服务中删除,即使少量肿胀的电池也必须完全删除。•切勿插入电池,然后将其充电过夜。•不符合上述警告可能会导致电池故障,并变得危险。
锂离子电池的热失控可能涉及各种类型的故障机制,每种机制都有其独特的特征。使用分数热失控量热法和高速射线照相术,对三种不同几何形状的圆柱形电池(18650、21700 和 D 型电池)对不同滥用机制(热滥用、内部短路和钉子刺穿)的响应进行了量化和统计检查。确定了电池几何形状与其热行为之间的相关性,例如在钉子刺穿过程中,随着电池直径的增加,电池每安培小时的热量输出(kJ Ah − 1 )会增加。高速射线照相术显示,与热滥用或内部短路滥用相比,钉子刺穿时电池内的热失控传播速率通常最高,其中随着直径的增加,传播速率相对增加。对于在相同条件下测试的特定电池模型,观察到热量输出分布,随着质量喷射的增加,热量输出呈增加的趋势。最后,使用嵌入在穿透钉中的热电偶进行内部温度测量被证明是不可靠的,因此表明在温度快速变化的情况下使用热电偶时需要小心。本文中使用的所有数据均通过 NREL 和 NASA 电池故障数据库开放获取。© 2022 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发(CC BY,http://creativecommons.org/licenses/ by/4.0/ ),允许在任何媒体中不受限制地重复使用作品,前提是正确引用原始作品。[DOI:10.1149/ 1945-7111/ac4fef ]
1. VRLA 技术 VRLA 代表阀控铅酸电池,这意味着电池是密封的。只有在过度充电或电池故障的情况下,气体才会通过安全阀逸出。VRLA 电池终身免维护。 2. 密封 (VRLA) AGM 电池 AGM 代表吸收性玻璃垫。在这些电池中,电解质通过毛细管作用被吸收到板之间的玻璃纤维垫中。正如我们在《无限能量》一书中所解释的那样,AGM 电池比胶体电池更适合短时间输送非常大的电流(发动机启动)。 3. 密封 (VRLA) 胶体电池 在这里,电解质被固定为凝胶。胶体电池通常比 AGM 电池具有更长的使用寿命和更好的循环容量。 4. 低自放电 由于使用铅钙板栅和高纯度材料,Victron VRLA 电池可以长时间存放而无需充电。20°C 时自放电率低于每月 2%。温度每升高 10°C,自放电率就会加倍。因此,如果保存在凉爽的条件下,Victron VRLA 电池可以存放长达一年而无需充电。 5. 卓越的深度放电恢复 Victron VRLA 电池具有卓越的放电恢复能力,即使在深度或长时间放电后也是如此。尽管如此,反复深度和长时间放电都会对所有铅酸电池的使用寿命产生非常负面的影响,Victron 电池也不例外。 6. 电池放电特性 Victron AGM 和 Gel Deep Cycle 电池的额定容量是指 20 小时放电,换句话说:放电电流为 0.05 C。Victron Tubular Plate Long Life 电池的额定容量是指 10 小时放电。有效容量随着放电电流的增加而降低(见表 1)。请注意,在恒定功率负载(如逆变器)的情况下,容量减少会更快。
1. VRLA 技术 VRLA 代表阀控铅酸电池,这意味着电池是密封的。只有在过度充电或电池故障的情况下,气体才会通过安全阀逸出。VRLA 电池终身免维护。 2. 密封 (VRLA) AGM 电池 AGM 代表吸收性玻璃垫。在这些电池中,电解质通过毛细管作用被吸收到板之间的玻璃纤维垫中。正如我们在《无限能量》一书中所解释的那样,AGM 电池比胶体电池更适合短时间输送非常大的电流(发动机启动)。 3. 密封 (VRLA) 胶体电池 在这里,电解质被固定为凝胶。胶体电池通常比 AGM 电池具有更长的使用寿命和更好的循环容量。 4. 低自放电 由于使用铅钙板栅和高纯度材料,Victron VRLA 电池可以长时间存放而无需充电。20°C 时自放电率低于每月 2%。温度每升高 10°C,自放电率就会加倍。因此,如果保存在凉爽的条件下,Victron VRLA 电池可以存放长达一年而无需充电。 5. 卓越的深度放电恢复 Victron VRLA 电池具有卓越的放电恢复能力,即使在深度或长时间放电后也是如此。尽管如此,反复深度和长时间放电都会对所有铅酸电池的使用寿命产生非常负面的影响,Victron 电池也不例外。 6. 电池放电特性 Victron AGM 和 Gel Deep Cycle 电池的额定容量是指 20 小时放电,换句话说:放电电流为 0.05 C。Victron Tubular Plate Long Life 电池的额定容量是指 10 小时放电。有效容量随着放电电流的增加而降低(见表 1)。请注意,在恒定功率负载(如逆变器)的情况下,容量减少会更快。
电动汽车(EV)通常由于其高能量密度,缺乏记忆效应,寿命长以及多次充电和排放能力而使用锂离子(Li-ion)电池。改变天气状况和健康状况不佳的主要原因之一是汽车排放量急剧增加。此外,与天气有关的风险和供应链问题还影响可再生能源,包括太阳能,风能和生物燃料。电动汽车提供的能量(存储在电池中)是一种消除污染物和不确定性的有吸引力的方法。运输行业的脱碳化取决于范围更大,安全性和可靠性的高级电动汽车(EV)的创建和采用。然而,随着时间的流逝和使用,环境退化问题以及寿命终止的重复使用,容量降解会极大地阻碍锂离子电池的使用。平均正常运行6。5年后,电动汽车的电池容量将降低约10%。找到一种可靠的方法来预测剩余生命(RUL)和监控能力降解是一项艰巨的任务。在实际使用中,锂离子电池通过经过许多充电和放电周期逐渐失去容量,直到它们达到生命的尽头(EOL)。保质期的标准定义是额定容量的70%或80%。使用末端后电池容量较快降低,这会影响电池性能甚至会损坏电池的性能。有了这些知识,电动汽车所有者可以做出明智的决定以避免电池故障。如何预测未来的能力和RUL,以及如何传达围绕预测值的不确定性水平,是电池管理系统(BMS)涵盖的主题之一。由于电池容量降解的轨迹是复杂的,而且非常非线性,因此很难对容量和RUR进行准确的预测。使用ML预测电动汽车电池寿命有很多好处。它可以帮助电动汽车所有者更好地计划旅行并避免电池耗尽。此外,它可以帮助电动汽车制造商创建更长的电池并开发可减少电池损坏的充电技术。在这项研究中,使用ML随机孔,决策树,XG提升,KNN和天真的贝叶斯算法来预测电动汽车的电池寿命。使用机器学习预测电池寿命会提出许多道德问题。一些最重要的是准确性,公平性,客观性和问责制。
摘要:在热失控(TR)期间,锂离子电池(LIBS)产生大量气体,当电池故障并随后燃烧或爆炸时,电动汽车和电化学能源存储系统可能会造成不可想象的灾难。因此,要系统地分析具有Lifepo 4(LFP)和Lini X Co Y Mn Z O 2(NCM)阴极材料的常用LIB的热后失控特性,并在电池热逃亡过程中最大程度地发挥了原位气体,我们在电池热失控过程中最大程度地发电了实验,则使用Adiabatic Explotic爆炸室(AEC)(AEC)测试libes libs libs libs libs libs libs libs。此外,我们对热失控过程中产生的气体成分进行了原位分析。我们的研究发现表明,在热失控之后,NCM电池比LFP电池产生的气体更多。基于电池气体的产生,TR造成的伤害程度可以排名如下:NCM9 0.5 0.5> NCM811> NCM622> NCM523> NCM523> LFP。NCM和LFP电池的热失控期间的主要气体组件包括H 2,CO,CO 2,C 2 H 4和CH 4。LFP电池产生的气体包含h 2的高比例。与NCM电池产生的混合气体相比,LFP电池在TR期间产生的LFP电池产生的气体的高浓度较低。因此,就电池TR气体组成而言,危险水平的顺序为LFP> NCM811> NCM622> NCM523> NCM9> NCM9 0.5 0.5 0.5 0.5 0.5。尽管LFP电池非常安全,但我们的研究结果再次引起了研究人员对LFP电池的关注。尽管实验结果表明,在大规模电池热失控事件中,LFP电池具有较高的热稳定性和较低的气体产生,考虑到气体产生成分和热失控产品,但LFP电池的热失控风险可能高于NCM电池。这些气体还可以用作电池热失控警告的检测信号,为未来电化学能源存储和可再生能源行业的未来开发提供了警告。
新的革命性产品,并在板上提供了协议连接:HTTPS,SNMPV3,Modbus TCP。该设备还具有用于连接其他Adelsystem设备的Adelbus协议。电源管理:多亏了所有单元(DC-UP),就可以优化电源管理。可用的功率自动分配在负载和电池之间,为负载提供电源是设备的首要任务,因此不需要将电源加倍,因为如果负载需要,则可以使用电池的电源将用于负载。负载输出上的最大可用电流是设备额定电流值的3倍。电池护理:算法上的概念基础可以实现快速,自动充电,四个充电状态,在时间期间的电池充电优化,平坦的电池恢复和安装和操作期间的实时诊断。实时自动诊断系统,监视电池故障,例如电池硫化,短路中的元素,意外的反向极性连接,电池断开连接,可以通过眨眼的诊断LED来轻松检测和删除它们;在安装期间和销售后。连续监视电池效率,降低电池损坏风险并允许永久连接的安全操作。每种设备都适用于所有电池类型,通过跳线,可能设置开放铅酸,密封铅酸,凝胶,Ni-CD(选件)的预定义曲线(选项)。它们针对两个充电级别进行编程,即提升和trick流,但用户可以将它们更改为单个充电级别。一个坚固的DIN轨安装套管,IP20保护学位。它们非常紧凑且具有成本效益。互连:ADELSYSTEM设备的平台通信允许以简单但非常强大的方式以太网连接所有组件。基于Modbus TCP/IP或SNMP技术的协议通信。您可以根据应用程序选择两个总线中的任何一个。它允许与Adelsystem提供的所有配件进行通信,并开发独立的电气连续性系统。同时,它允许通过云上的应用工具来监视和控制系统中的所有参数,甚至从世界另一端。adelsystem使您可以为能源系统实施非常简单但复杂的监视和控制,并为接触应用程序的新方法打开了思想。规范和认证:符合EMC 2014/30/EU的CE标记:电磁兼容性指令; 2014/35/EU:低压指令; ROHS 2011/65/EU:限制在2015/863/eu进行的电气和电子设备(ROHS)中使用某些危险物质(ROHS)。EMC免疫:EN61000-6-2; EMC排放:EN61000-6-3。 根据:机械设备EN 60204的电气设备;电气安全(信息技术设备)IEC/EN EN62368-1。EMC免疫:EN61000-6-2; EMC排放:EN61000-6-3。根据:机械设备EN 60204的电气设备;电气安全(信息技术设备)IEC/EN EN62368-1。